ITIS 313 Data and Information Management

Fall 2021

Business Intelligence and Data Warehouses

Learning Objectives

- How business intelligence provides a comprehensive business decision support framework
- About business intelligence architecture, its evolution, and reporting styles
- About the relationship and differences between operational data and decision support data
- What a data warehouse is and how to prepare data for one

Business Intelligence and Data Warehouses

Learning Objectives

- What star schemas are and how they are constructed
- About data analytics, data mining, and predictive analytics
- About online analytical processing (OLAP)
- How SQL extensions are used to support OLAP-type data manipulations

Business Intelligence (BI)

- Comprehensive, cohesive, integrated set of tools and processes
 - Captures, collects, integrates, stores, and analyzes data
- Purpose Generate and present information to support business decision making
- Allows a business to transform:
 - Data into information
 - Information into knowledge
 - Knowledge into wisdom

Figure 13.1 - Business Intelligence Framework

Business Intelligence Tools

- Dashboards and business activity monitoring
 - Dashboards: Shows key business performance indicators in a single integrated view
- **Portals**: Integrate data using web browser from multiple sources into a single webpage
- Data analysis and reporting tools
- Data-mining tools
- Data warehouses (DW)
- OLAP tools and data visualization

Practices to Manage Data

- Master data management (MDM): Collection of concepts, techniques, and processes for identification, definition, and management of data elements
- Governance: Method of government for controlling business health and for consistent decision making
- Key performance indicators (KPI): Numeric or scale-based measurements that assess company's effectiveness in reaching its goals

Practices to Manage Data

- **Data visualization**: Abstracting data to provide information in a visual format
 - Enhances the user's ability to efficiently comprehend the meaning of the data
 - Techniques
 - Pie charts and bar charts
 - Line graphs
 - Scatter plots
 - Gantt charts
 - Heat maps

Reporting Styles of a Modern BI System

Advanced reporting

Monitoring and alerting

Advanced data analytics

Business Intelligence Benefits

Improved decision making

Integrating architecture

Common user interface for data reporting and analysis

Common data repository fosters single version of company data

Improved organizational performance

Table 13.4 - Business IntelligenceEvolution

SYSTEM TYPE	DATA Source	DATA EXTRACTION/ INTEGRATION PROCESS	DATA STORE	END-USER QUERY TOOL	END USER Presentation Tool
Traditional mainframe- based online transaction processing (OLTP)	Operational data	None Reports read and sum- marized data directly from operational data	None Temporary files used for report- ing purposes	Very basic Predefined reporting formats Basic sorting, totaling, and averaging	Very basic Menu-driven, predefined reports, text and numbers only
Managerial information system (MIS)	Operational data	Basic extraction and aggregation Read, filter, and sum- marize operational data into intermediate data store	Lightly aggre- gated data in RDBMS	Same as above, in addition to some ad hoc reporting using SQL	Same as above, in addition to some ad hoc columnar report definitions
First-generation departmental decision sup- port system (DSS)	Operational data External data	Data extraction and integration process populates DSS data store Run periodically	First DSS data- base generation Usually RDBMS	Query tool with some analyti- cal capabilities and predefined reports	Spreadsheet style Advanced presen- tation tools with plotting and graph- ics capabilities

Cengage Learning © 2015

Table 13.4 - Business Intelligence Evolution

SYSTEM TYPE	DATA Source	DATA EXTRACTION/ INTEGRATION PROCESS	DATA STORE	END-USER QUERY TOOL	END USER Presentation Tool
First-generation BI	Operational data External data	Advanced data extrac- tion and integration Access diverse data sources, filters, aggre- gations, classifica- tions, scheduling, and conflict resolution	Data warehouse RDBMS technology Optimized for query purposes Star schema model	Same as above	Same as above, in addition to multidimensional presentation tools with drill-down capabilities
Second- generation BI Online analyti- cal processing (OLAP)	Same as above	Same as above	Data warehouse stores data in MDBMS Cubes with mul- tiple dimensions	Adds support for end-user-based data analytics	Same as above, but uses cubes and multidimensional matrixes; limited by cube size Dashboards Scorecards Portals
Third- generation Mobile BI and cloud-based	Same as above	Same as above Cloud-based	Same as above Cloud-based	Advanced analytics Limited ad hoc interactions	Mobile devices: iPhone, iPad, Blackberry, Android

Cengage Learning © 2015

Figure 13.3 - Evolution of BI Information Dissemination Formats

Business Intelligence Technology Trends

Data storage improvements

Business intelligence appliances

Business intelligence as a service

Big Data analytics

Personal analytics

Decision Support Data

- Effectiveness of BI depends on quality of data gathered at operational level
- Operational data
 - Seldom well-suited for decision support tasks
 - Stored in relational database with highly normalized structures
 - Optimized to support transactions representing daily operations

Decision Support Data

- Differ from operational data in:
 - Time span
 - Granularity
 - **Drill down**: Decomposing a data to a lower level
 - Roll up: Aggregating a data into a higher level
 - Dimensionality

Table 13.5 - Contrasting Operational andDecision Support Data Characteristics

CHARACTERISTIC	OPERATIONAL DATA	DECISION SUPPORT DATA
Data currency	Current operations Real-time data	Historic data Snapshot of company data Time component (week/month/year)
Granularity	Atomic-detailed data	Summarized data
Summarization level	Low; some aggregate yields	High; many aggregation levels
Data model	Highly normalized Mostly relational DBMSs	Non-normalized Complex structures Some relational, but mostly multidimensional DBMSs
Transaction type	Mostly updates	Mostly query
Transaction volumes	High-update volumes	Periodic loads and summary calculations
Transaction speed	Updates are critical	Retrievals are critical
Query activity	Low to medium	High
Query scope	Narrow range	Broad range
Query complexity	Simple to medium	Very complex
Data volumes	Hundreds of gigabytes	Terabytes to petabytes

Cengage Learning © 2015

Decision Support Database Requirements

- Database schema
 - Must support complex, non-normalized data representations
 - Data must be aggregated and summarized
 - Queries must be able to extract multidimensional time slices

Decision Support Database Requirements

- Data extraction and loading
 - Allow batch and scheduled data extraction
 - Support different data sources and check for inconsistent data or data validation rules
 - Support advanced integration, aggregation, and classification
- Database size should support:
 - Very large databases (VLDBs)
 - Advanced storage technologies
 - Multiple-processor technologies

Table 13.8 - Characteristics of Data WarehouseData and Operational Database Data

CHARACTERISTIC	OPERATIONAL DATABASE DATA	DATA WAREHOUSE DATA
Integrated	Similar data can have different repre- sentations or meanings. For example, Social Security numbers may be stored as ###-##-#### or as #########, and a given condition may be labeled as T/F or 0/1 or Y/N. A sales value may be shown in thousands or in millions.	Provide a unified view of all data elements with a common definition and representation for all business units.
Subject-oriented	Data are stored with a functional, or process, orientation. For example, data may be stored for invoices, payments, and credit amounts.	Data are stored with a subject orientation that facilitates multiple views of the data and decision making. For example, sales may be recorded by product, division, manager, or region.
Time-variant	Data are recorded as current transac- tions. For example, the sales data may be the sale of a product on a given date, such as \$342.78 on 12-MAY-2014.	Data are recorded with a historical perspective in mind. Therefore, a time dimension is added to facilitate data analysis and various time comparisons.
Nonvolatile	Data updates are frequent and common. For example, an inventory amount changes with each sale. Therefore, the data environment is fluid.	Data cannot be changed. Data are added only periodically from historical systems. Once the data are properly stored, no changes are allowed. Therefore, the data environment is relatively static.

Cengage Learning © 2015

Figure 13.5 - The ETL Process

Cengage Learning © 2015

Data Marts

- Small, single-subject data warehouse subset
- Provide decision support to a small group of people
- Benefits over data warehouses
 - Lower cost and shorter implementation time
 - Technologically advanced
 - Inevitable people issues

Table 13.9 - Twelve Rules for a DataWarehouse

RULE NO.	DESCRIPTION
1	The data warehouse and operational environments are separated.
2	The data warehouse data are integrated.
3	The data warehouse contains historical data over a long time.
4	The data warehouse data are snapshot data captured at a given point in time.
5	The data warehouse data are subject oriented.
6	The data warehouse data are mainly read-only with periodic batch updates from operational data. No online updates are allowed.

Cengage Learning © 2015

Table 13.9 - Twelve Rules for a DataWarehouse

RULE NO.	DESCRIPTION
7	The data warehouse development life cycle differs from classical systems development. Data warehouse development is data-driven; the classical approach is process-driven.
8	The data warehouse contains data with several levels of detail: current detail data, old detail data, lightly summarized data, and highly summarized data.
9	The data warehouse environment is characterized by read-only transactions to very large data sets. The operational environment is characterized by numerous update transactions to a few data entities at a time.
10	The data warehouse environment has a system that traces data sources, transformations, and storage.
11	The data warehouse's metadata are a critical component of this environment. The metadata identify and define all data elements. The metadata provide the source, transformation, integration, storage, usage, relationships, and history of each data element.
12	The data warehouse contains a chargeback mechanism for resource usage that enforces optimal use of the data by end users.

Cengage Learning © 2015

Star Schema

- Data-modeling technique
- Maps multidimensional decision support data into a relational database
- Creates the near equivalent of multidimensional database schema from existing relational database
- Yields an easily implemented model for multidimensional data analysis

Components of Star Schemas

Facts

• Numeric values that represent a specific business aspect

Dimensions

Qualifying characteristics that provide additional perspectives to a given fact

Attributes

- Used to search, filter, and classify facts
- **Slice and dice**: Ability to focus on slices of the data cube for more detailed analysis

Attribute hierarchy

• Provides a top-down data organization

Star Schema Representation

- Facts and dimensions represented by physical tables in data warehouse database
- Many-to-one (M:1) relationship between fact table and each dimension table
- Fact and dimension tables
 - Related by foreign keys
 - Subject to primary and foreign key constraints

Star Schema Representation

- Primary key of a fact table
 - Is a composite primary key because the fact table is related to many dimension tables
 - Always formed by combining the foreign keys pointing to the related dimension tables

Techniques Used to Optimize Data Warehouse Design

- Normalizing dimensional tables
 - Snowflake schema: Dimension tables can have their own dimension tables
- Maintaining multiple fact tables to represent different aggregation levels
- Denormalizing fact tables

Techniques Used to Optimize Data Warehouse Design

- Partitioning and replicating tables
 - Partitioning: Splits tables into subsets of rows or columns and places them close to customer location
 - **Replication**: Makes copy of table and places it in a different location
 - **Periodicity**: Provides information about the time span of the data stored in the table

Data Analytics

- Encompasses a wide range of mathematical, statistical, and modeling techniques to extract knowledge from data
 - Subset of BI functionality
- Classification of tools
 - Explanatory analytics: Focuses on discovering and explaining data characteristics and relationships based on existing data
 - Predictive analytics: Focuses on predicting future outcomes with a high degree of accuracy

Data Mining

- Analyzing massive amounts of data to:
 - Uncover hidden trends, patterns, and relationships
 - Form computer models to stimulate and explain the findings
 - Use the models to support business decision making
- Run in two modes
 - Guided
 - Automated

Figure 13. 15 - Extracting Knowledge from Data

Cengage Learning © 2015

Figure 13. 16 - Data-Mining Phases

Cengage Learning © 2015

Predictive Analytics

- Employs mathematical and statistical algorithms, neural networks, artificial intelligence, and other advanced modeling tools
- Creates actionable predictive models based on available data
 - Next logical step after data mining
- Adds value to an organization
 - Helps optimize the existing processes
 - Identify hidden problems
 - Anticipate future problems or opportunities

Online Analytical Processing

- Advanced data analysis environment that supports decision making, business modeling, and operations research
- Characteristics
 - Multidimensional data analysis techniques
 - Advanced database support
 - Easy-to-use end-user interfaces

Multidimensional Data Analysis Techniques

- Data are processed and viewed as part of a multidimensional structure
- Augmenting functions
 - Advanced data presentation functions
 - Advanced data aggregation, consolidation, and classification functions
 - Advanced computational functions
 - Advanced data-modeling functions

Advanced Database Support

- Advanced data access features
 - Access to many different kinds of DBMSs, flat files, and internal and external data sources
 - Access to aggregated data warehouse data and to the detail data found in operational databases
 - Advanced data navigation features
 - Rapid and consistent query response times
 - Ability to map end-user requests to appropriate data source and to proper data access language
 - Support for very large databases

Easy-to-Use End-User Interface

- Proper implementation leads to simple navigation and accelerated decision making or data analysis
- Advanced OLAP features are more useful when access is kept simple
- Many interface features are borrowed from previous generations of data analysis tools

Figure 13.19 - OLAP Architecture

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Figure 13.20 - OLAP Server with Local Miniature Data Marts

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Relational Online Analytical Processing (ROLAP)

- Provides OLAP functionality using relational databases and familiar relational tools to store and analyze multidimensional data
- Extensions added to traditional RDBMS technology
 - Multidimensional data schema support within the RDBMS
 - Data access language and query performance optimized for multidimensional data
 - Support for very large databases (VLDBs)

Multidimensional Online Analytical Processing (MOLAP)

- Extends OLAP functionality to multidimensional database management systems (MDBMSs)
 - MDBMS: Uses proprietary techniques store data in matrix-like n-dimensional arrays
 - End users visualize stored data as a 3D data cube
 - Grow to n dimensions, becoming hypercubes
 - Held in memory in a **cube cache** to speed access
- **Sparsity**: Measures the density of the data held in the data cube

Table 13.12 - Relational vs. Multidimensional OLAP

CHARACTERISTIC	ROLAP	MOLAP
Schema	Uses star schema Additional dimensions can be added dynamically	Uses data cubes Multidimensional arrays, row stores, column stores Additional dimensions require re-creation of the data cube
Database size	Medium to large	Large
Architecture	Client/server Standards-based	Client/server Open or proprietary, depending on vendor
Access	Supports ad hoc requests Unlimited dimensions	Limited to predefined dimensions Proprietary access languages
Speed	Good with small data sets; average for medium-sized to large data sets	Faster for large data sets with predefined dimensions

Cengage Learning © 2015

SQL Extensions for OLAP

The ROLLUP extension

- Used with GROUP BY clause to generate aggregates by different dimensions
- Enables subtotal for each column listed except for the last one, which gets a grand total
- Order of column list important

The CUBE extension

- Used with GROUP BY clause to generate aggregates by the listed columns
- Includes the last column

Materialized View

- Dynamic table that contains SQL query command to generate rows and stores the actual rows
- Created the first time query is run
 - Summary rows are stored in the table
- Automatically updated when base tables are updated
- Requires specified privileges