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Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable remote procedure calls

What can go wrong?

@ The client is unable to locate the server.
© The request message from the client to the server is lost.

© The server crashes after receiving a request.

© The reply message from the server to the client is lost.

© The client crashes after sending a request.

Two “easy” solutions

1. (cannot locate server): just report back to client

2. (request was lost): just resend message



Fault tolerance: Reliable client-server communication

Reliable RPC: server crash

RPC semantics in the presence of failures
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Where (a) is the normal case, situations (b) and (c) require different solutions.
However, we don’t know what happened. Two approaches:

@ At-least-once-semantics: The server guarantees it will carry out an
operation at least once, no matter what.

@ At-most-once-semantics: The server guarantees it will carry out an
operation at most once.




Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: lost reply messages

The real issue

What the client notices, is that it is not getting an answer. However, it cannot

decide whether this is caused by a lost request, a crashed server, or a lost
response.

Partial solution

Design the server such that its operations are idempotent: repeating the same
operation is the same as carrying it out exactly once:

@ pure read operations
@ strict overwrite operations

Many operations are inherently nonidempotent, such as many banking
transactions.




Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: client crash

Problem

The server is doing work and holding resources for nothing (called doing an
orphan computation).

Solution

@ Orphan is killed (or rolled back) by the client when it recovers

@ Client broadcasts new epoch number when recovering = server Kkills
client’s orphans

@ Require computations to complete in a T time units. Old ones are simply
removed.




Fault tolerance: Reliable group communication

Simple reliable group communication

Intuition

A message sent to a process group G should be delivered to each member of
G. Important: make distinction between receiving and delivering messages.
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Fault tolerance: Reliable group communication

Less simple reliable group communication

Reliable communication in the presence of faulty processes

Group communication is reliable when it can be guaranteed that a message is
received and subsequently delivered by all nonfaulty group members.

y

Tricky part
Agreement is needed on what the group actually looks like before a received
message can be delivered.




Fault tolerance: Reliable group communication

Simple reliable group communication

Reliable communication, but assume nonfaulty processes

Reliable group communication now boils down to reliable multicasting: is a
message received and delivered to each recipient, as intended by the sender.
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Fault tolerance: Distributed commit

Distributed commit protocols

Problem

Have an operation being performed by each member of a process group, or
none at all.

@ Reliable multicasting: a message is to be delivered to all recipients.

@ Distributed transaction: each local transaction must succeed.




Fault tolerance: Distributed commit

Two-phase commit protocol (2PC)

Essence

The client who initiated the computation acts as coordinator; processes
required to commit are the participants.

@ Phase 1a: Coordinator sends VOTE-REQUEST to participants (also called
a pre-write)

@ Phase 1b: When participant receives VOTE-REQUEST It returns either
VOTE-COMMIT or VOTE-ABORT to coordinator. If it sends VOTE-ABORT, it
aborts its local computation

@ Phase 2a: Coordinator collects all votes; if all are VOTE-COMMIT, it sends
GLOBAL-COMMIT to all participants, otherwise it sends GLOBAL-ABORT

@ Phase 2b: Each participant waits for GLOBAL-COMMIT or GLOBAL-ABORT
and handles accordingly.

y
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Fault tolerance: Distributed commit

2PC - Finite state machines
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Fault tolerance: Distributed commit

2PC — Falling participant

Analysis: participant crashes in state S, and recovers to S

@ /NI/T: No problem: participant was unaware of protocol

@ READY': Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make =- log the

coordinator’s decision

@ ABORT: Merely make entry into abort state idempotent, e.g., removing
the workspace of results

@ COMMIT: Also make entry into commit state idempotent, e.g., copying
workspace to storage. )

When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of

fallures. y




Fault tolerance: Distributed commit

2PC — Falling participant

Alternative

When a recovery is needed to READY state, check state of other participants

= Nno need to log coordinator’'s decision.

4

State of Q | Actionby P

COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Contact another participant

Result

It all participants are in the READY state, the protocol blocks. Apparently, the
coordinator is failing. Note: The protocol prescribes that we need the decision

from the coordinator.

y
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Fault tolerance: Distributed commit

2PC — Falling coordinator

Observation

The real problem lies in the fact that the coordinator’s final decision may not be
available for some time (or actually lost).

Alternative

Let a participant P in the READY state timeout when it hasn't received the
coordinator's decision; P tries to find out what other participants know (as
discussed).

Observation

Essence of the problem is that a recovering participant cannot make a local
decision: it is dependent on other (possibly failed) processes
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Fault tolerance: Recovery Introduction

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

@ Forward error recovery: Find a new state from which the system can
continue operation

@ Backward error recovery: Bring the system back into a previous error-free
state

y

Use backward error recovery, requiring that we establish recovery points I

Observation

Recovery in distributed systems is complicated by the fact that processes need
to cooperate Iin identifying a consistent state from where to recover
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Fault tolerance: Recovery

Checkpointing

Consistent recovery state

Every message that has been received is also shown to have been sent in the
state of the sender.

Recovery line

Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.
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Coordinated checkpointing

In coordinated checkpointing all processes synchronize to jointly write their
state to local storage. The main advantage of coordinated checkpointing is
that the saved state is automatically globally consistent. A simple solution
is to use a two-phase blocking protocol. A coordinator first multicasts a
CHECKPOINT-REQUEST message to all processes. When a process receives
such a message, it takes a local checkpoint, queues any subsequent message
handed to it by the application it is executing, and acknowledges to the
coordinator that it has taken a checkpoint. When the coordinator has received
an acknowledgment from all processes, it multicasts a CHECKPOINT-DONE
message to allow the (blocked) processes to continue.

17



Text Book

DISTRIBUTED SYSTEMS

Maarten van Steen
Andrew S. Tanenbaum

THIRD EDITION - VERSION 01

18



