
FACULTY OF INFORMATION TECHNOLOGY 1

Distributed Systems

Fault Tolerance



2

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable remote procedure calls

What can go wrong?

1 The client is unable to locate the server.
2 The request message from the client to the server is lost.
3 The server crashes after receiving a request.
4 The reply message from the server to the client is lost.
5 The client crashes after sending a request.

Two “easy” solutions

1: (cannot locate server): just report back to client

2: (request was lost): just resend message

41 / 67



3

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: server crash

Receive

Execute

Reply

REQ

REP

Server

Receive

Execute

Crash

REQ

No REP

Server

Receive

Crash

REQ

No REP

Server

(a) (b) (c)

Problem
Where (a) is the normal case, situations (b) and (c) require different solutions.
However, we don’t know what happened. Two approaches:

At-least-once-semantics: The server guarantees it will carry out an
operation at least once, no matter what.

At-most-once-semantics: The server guarantees it will carry out an
operation at most once.

Server crashes 42 / 67



4

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: lost reply messages

The real issue
What the client notices, is that it is not getting an answer. However, it cannot
decide whether this is caused by a lost request, a crashed server, or a lost
response.

Partial solution
Design the server such that its operations are idempotent: repeating the same
operation is the same as carrying it out exactly once:

pure read operations
strict overwrite operations

Many operations are inherently nonidempotent, such as many banking
transactions.

Lost reply messages 45 / 67



5

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: client crash

Problem
The server is doing work and holding resources for nothing (called doing an
orphan computation).

Solution

Orphan is killed (or rolled back) by the client when it recovers

Client broadcasts new epoch number when recovering ) server kills
client’s orphans

Require computations to complete in a T time units. Old ones are simply
removed.

Client crashes 46 / 67



6

Fault tolerance: Reliable group communication

Simple reliable group communication

Intuition
A message sent to a process group G should be delivered to each member of
G. Important: make distinction between receiving and delivering messages.

Message reception

Message delivery

Message-handling
component

Message-handling
component

Message-handling
component

Group membership
functionality

Group membership
functionality

Group membership
functionality

Local OS Local OS Local OS

Sender Recipient Recipient

Network

47 / 67



7

Fault tolerance: Reliable group communication

Less simple reliable group communication

Reliable communication in the presence of faulty processes
Group communication is reliable when it can be guaranteed that a message is
received and subsequently delivered by all nonfaulty group members.

Tricky part
Agreement is needed on what the group actually looks like before a received
message can be delivered.

48 / 67



8

Fault tolerance: Reliable group communication

Simple reliable group communication

Reliable communication, but assume nonfaulty processes
Reliable group communication now boils down to reliable multicasting: is a
message received and delivered to each recipient, as intended by the sender.

M25

Sender Receiver Receiver Receiver Receiver

History
buffer

M25 M25 M25 M25

Last = 24 Last = 23Last = 24 Last = 24

Receiver missed
message #24

Network

Sender Receiver Receiver Receiver Receiver

M25 M25 M25 M25

Last = 25 Last = 23Last = 24 Last = 24

ACK 25 ACK 25
ACK 25Missed 24

Network

49 / 67



9

Fault tolerance: Distributed commit

Distributed commit protocols

Problem
Have an operation being performed by each member of a process group, or
none at all.

Reliable multicasting: a message is to be delivered to all recipients.

Distributed transaction: each local transaction must succeed.

50 / 67



10

Fault tolerance: Distributed commit

Two-phase commit protocol (2PC)

Essence
The client who initiated the computation acts as coordinator; processes
required to commit are the participants.

Phase 1a: Coordinator sends VOTE-REQUEST to participants (also called
a pre-write)

Phase 1b: When participant receives VOTE-REQUEST it returns either
VOTE-COMMIT or VOTE-ABORT to coordinator. If it sends VOTE-ABORT, it
aborts its local computation

Phase 2a: Coordinator collects all votes; if all are VOTE-COMMIT, it sends
GLOBAL-COMMIT to all participants, otherwise it sends GLOBAL-ABORT

Phase 2b: Each participant waits for GLOBAL-COMMIT or GLOBAL-ABORT
and handles accordingly.

51 / 67



11

Fault tolerance: Distributed commit

2PC - Finite state machines

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Global-commit
ACK

Coordinator Participant

52 / 67



12

Fault tolerance: Distributed commit

2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

INIT : No problem: participant was unaware of protocol

READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make ) log the
coordinator’s decision

ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

53 / 67



13

Fault tolerance: Distributed commit

2PC – Failing participant

Alternative
When a recovery is needed to READY state, check state of other participants
) no need to log coordinator’s decision.

Recovering participant P contacts another participant Q

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Result
If all participants are in the READY state, the protocol blocks. Apparently, the
coordinator is failing. Note: The protocol prescribes that we need the decision
from the coordinator.

54 / 67



14

Fault tolerance: Distributed commit

2PC – Failing coordinator

Observation
The real problem lies in the fact that the coordinator’s final decision may not be
available for some time (or actually lost).

Alternative
Let a participant P in the READY state timeout when it hasn’t received the
coordinator’s decision; P tries to find out what other participants know (as
discussed).

Observation
Essence of the problem is that a recovering participant cannot make a local
decision: it is dependent on other (possibly failed) processes

55 / 67



15

Fault tolerance: Recovery Introduction

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation

Backward error recovery: Bring the system back into a previous error-free
state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes need
to cooperate in identifying a consistent state from where to recover

58 / 67



16

Fault tolerance: Recovery Checkpointing

Consistent recovery state

Requirement
Every message that has been received is also shown to have been sent in the
state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection
of checkpoints

Message sent
from P2 to P1

59 / 67



17

494 CHAPTER 8. FAULT TOLERANCE

as a recovery line. In other words, a recovery line corresponds to the most
recent consistent collection of checkpoints, as shown in Figure 8.35.

Coordinated checkpointing

In coordinated checkpointing all processes synchronize to jointly write their
state to local storage. The main advantage of coordinated checkpointing is
that the saved state is automatically globally consistent. A simple solution
is to use a two-phase blocking protocol. A coordinator first multicasts a
checkpoint-request message to all processes. When a process receives
such a message, it takes a local checkpoint, queues any subsequent message
handed to it by the application it is executing, and acknowledges to the
coordinator that it has taken a checkpoint. When the coordinator has received
an acknowledgment from all processes, it multicasts a checkpoint-done
message to allow the (blocked) processes to continue.

It is easy to see that this approach will also lead to a globally consistent
state, because no incoming message will ever be registered as part of a
checkpoint. The reason for this is that any message that follows a request for
taking a checkpoint is not considered to be part of the local checkpoint. At
the same time, outgoing messages (as handed to the checkpointing process by
the application it is running), are queued locally until the checkpoint-done
message is received.

An improvement to this algorithm is to send a checkpoint request only to
those processes that depend on the recovery of the coordinator, and ignore the
other processes. A process is dependent on the coordinator if it has received a
message that is directly or indirectly causally related to a message that the
coordinator had sent since the last checkpoint. This leads to the notion of an
incremental snapshot.

To take an incremental snapshot, the coordinator sends a checkpoint
request only to those processes it had sent a message to since it last took a
checkpoint. When a process P receives such a request, it forwards the request
to all those processes to which P itself had sent a message since the last
checkpoint, and so on. A process forwards the request only once. When all
processes have been identified, a second multicast is used to actually trigger
checkpointing and to let the processes continue where they had left off.

Independent checkpointing

Now consider the case in which each process simply records its local state
from time to time in an uncoordinated fashion. To discover a recovery line
requires that each process is rolled back to its most recently saved state. If
these local states jointly do not form a distributed snapshot, further rolling
back is necessary. This process of a cascaded rollback may lead to what is
called the domino effect and is shown in Figure 8.36.

DS 3.01pre downloaded by HUSNI@TRUNOJOYO.AC.ID

494 CHAPTER 8. FAULT TOLERANCE

as a recovery line. In other words, a recovery line corresponds to the most
recent consistent collection of checkpoints, as shown in Figure 8.35.

Coordinated checkpointing

In coordinated checkpointing all processes synchronize to jointly write their
state to local storage. The main advantage of coordinated checkpointing is
that the saved state is automatically globally consistent. A simple solution
is to use a two-phase blocking protocol. A coordinator first multicasts a
checkpoint-request message to all processes. When a process receives
such a message, it takes a local checkpoint, queues any subsequent message
handed to it by the application it is executing, and acknowledges to the
coordinator that it has taken a checkpoint. When the coordinator has received
an acknowledgment from all processes, it multicasts a checkpoint-done
message to allow the (blocked) processes to continue.

It is easy to see that this approach will also lead to a globally consistent
state, because no incoming message will ever be registered as part of a
checkpoint. The reason for this is that any message that follows a request for
taking a checkpoint is not considered to be part of the local checkpoint. At
the same time, outgoing messages (as handed to the checkpointing process by
the application it is running), are queued locally until the checkpoint-done
message is received.

An improvement to this algorithm is to send a checkpoint request only to
those processes that depend on the recovery of the coordinator, and ignore the
other processes. A process is dependent on the coordinator if it has received a
message that is directly or indirectly causally related to a message that the
coordinator had sent since the last checkpoint. This leads to the notion of an
incremental snapshot.

To take an incremental snapshot, the coordinator sends a checkpoint
request only to those processes it had sent a message to since it last took a
checkpoint. When a process P receives such a request, it forwards the request
to all those processes to which P itself had sent a message since the last
checkpoint, and so on. A process forwards the request only once. When all
processes have been identified, a second multicast is used to actually trigger
checkpointing and to let the processes continue where they had left off.

Independent checkpointing

Now consider the case in which each process simply records its local state
from time to time in an uncoordinated fashion. To discover a recovery line
requires that each process is rolled back to its most recently saved state. If
these local states jointly do not form a distributed snapshot, further rolling
back is necessary. This process of a cascaded rollback may lead to what is
called the domino effect and is shown in Figure 8.36.

DS 3.01pre downloaded by HUSNI@TRUNOJOYO.AC.ID



18

Text Book


