
Dr. Omar AbusadaITNT404

Could Computing, ITNT404

Lecturer: Dr. Omar Abusada

E-mail: omar.abusaeeda@uot.edu.ly

MapReduce as Hadoop Tool



What is Map-Reduce?

Dr. Omar AbusadaITNT404

Map-Reduce could be defined as two parts:

 A model for writing programs that can easily be made to process data in parallel.

 A framework that runs these programs in parallel, automatically handling the details

of division of labor, distribution, synchronization, and fault-tolerance.

The model and the framework work together to make programs that are scalable,

distributed, and fault-tolerant.



Apache MapReduce

Dr. Omar AbusadaITNT404

 All the world turned digital

 A software framework for distributed processing of large data sets

 The framework takes care of scheduling tasks, monitoring them and re-executing any

failed tasks.

 It splits the input data set into independent chunks that are processed in a completely

parallel manner.

 MapReduce framework sorts the outputs of the maps, which are then input to the

reduce tasks. Typically, both the input and the output of the job are stored in a file

system.



MapReduce programming model

Dr. Omar AbusadaITNT404

 MapReduce consists of two phases and its key innovation is:

 The ability to take a query over a data set, divide it, and run it in parallel over many nodes.

 Solves the issue of data too large (Big Data) to fit onto a single machine

 Distributed computing over many servers

 Batch processing model

 Map phase, input data is processed, item by item, and transformed into an intermediate 

data set.

 Reduce phase, these intermediate results are reduced to a summarized data set, which is 

the desired end result.



Data Distribution

Dr. Omar AbusadaITNT404

 In a MapReduce cluster, data is distributed to all the nodes of the cluster as it is being loaded

in.

 An underlying distributed file systems (e.g., GFS) splits large data files into chunks which are

managed by different nodes in the cluster

 Even though the file chunks are distributed across several machines, they form a single

namesapce
Input data: A large file

Node 1

Chunk of input 

data

Node 2

Chunk of input 

data

Node 3

Chunk of input 

data



MapReduce: Very high level overview

Dr. Omar AbusadaITNT404

 process data in a batch-oriented fashion and may take minutes or hours to process

(normally).



MapReduce: Very high level overview

Dr. Omar AbusadaITNT404



MapReduce: Very high level overview
 Loading the data

• This operation is properly called Extract, Transform, Load (ETL) in data warehousing terminology.

• Data must be extracted from its source, structured to make it ready for processing, and loaded into the

storage layer for MapReduce to operate on it.

 MapReduce

• This phase will recover data from storage,

• Process it (map, collect and sort map results, reduce)

• And return the results to the storage.

 Extracting the result

• Once processing is complete, for the result to be useful, it must be retrieved from the storage and

presented.

Dr. Omar AbusadaITNT404



MapReduce: A Bird’s-Eye View

 In MapReduce, chunks are processed in isolation by tasks called

Mappers

 The outputs from the mappers are denoted as intermediate outputs

(IOs) and are brought into a second set of tasks called Reducers

 The process of bringing together IOs into a set of Reducers is known

as shuffling process

 The Reducers produce the final outputs (FOs)

 Overall, MapReduce breaks the data flow into two phases, map phase

and reduce phase

Dr. Omar AbusadaITNT404

C0 C1 C2 C3

M0 M1 M2 M3

IO0 IO1 IO2 IO3

R0 R1

FO0 FO1

chunks

mappers

Reducers

M
a

p
 P

h
a

s
e

R
e

d
u

c
e

 P
h

a
s

e

Shuffling Data



MapReduce: Very high level overview

Dr. Omar AbusadaITNT404



Benefits of MapReduce Model

Dr. Omar AbusadaITNT404

 By providing a data-parallel programming model, MapReduce can control job

execution in useful ways:

 Automatic division of job into tasks

 Automatic placement of computation near data

 Automatic load balancing

 Recovery from failures & stragglers

 User focuses on application, not on complexities of distributed computing (Implicit

Parallelism)



Example: Word Count

Dr. Omar AbusadaITNT404

 Basic Pattern: Strings

1. Extract words from web 
pages in parallel.

2. Hash and sort words. 3. Count in parallel.



Common word_Count

Dr. Omar AbusadaITNT404



Common word_Count

Dr. Omar AbusadaITNT404

void map(string i, string line):
for word in line:

print word, 1

Word_count – map function

void reduce(string word, list partial_counts):
total = 0
for c in partial_counts:

total += c
print word, total

Word_count – reduce function



Keys and Values

Dr. Omar AbusadaITNT404

 The programmer in MapReduce has to specify two functions, the map function and the

reduce function that implement the Mapper and the Reducer in a MapReduce program.

 In MapReduce data elements are always structured as key-value (i.e., (K, V)) pairs

 The map and reduce functions receive and emit (K, V) pairs

(K, V) 

Pairs

Map 

Function

(K’, V’) 

Pairs

Reduce 

Function

(K’’, V’’) 

Pairs

Input Splits Intermediate Outputs Final Outputs



Partitions

Dr. Omar AbusadaITNT404

 In MapReduce, intermediate output values are not usually reduced together

 All values with the same key are presented to a single Reducer together

 More specifically, a different subset of intermediate key space is assigned to each Reducer

 These subsets are known as partitions

Different colors represent 

different keys (potentially) 

from different Mappers

Partitions are the input to Reducers



 MapReduce assumes a tree style network topology.

 Nodes are spread over different racks embraced in one or many data centers.

 A salient point is that the bandwidth between two nodes is dependent on their relative locations

in the network topology.

 For example, nodes that are on the same rack will have higher bandwidth between them as

opposed to nodes that are off-rack.

Dr. Omar AbusadaITNT404

Network Topology In MapReduce



Dr. Omar AbusadaITNT404

H
a

d
o

o
p

 M
a

p
R

e
d

u
c

e
: 

A
 C

lo
se

r 
Lo

o
k

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Inter mediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local 

HDFS store

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local 

HDFS store

Node 1 Node 2

Shuffling 

Process

Intermediate 

(K,V) pairs 

exchanged by 

all nodes



Dr. Omar AbusadaITNT404

Input Files

 Input files are where the data for a MapReduce task is initially stored

 The input files typically reside in a distributed file system (e.g. HDFS)

 The format of input files is arbitrary

 Line-based log files

 Binary files

 Multi-line input records

 Or something else entirely

file

file



Dr. Omar AbusadaITNT404

Input Format

 The format of input files is arbitrary

 How the input files are split up and read is defined by the Input_Format

 Input_Format is a class that does the following:

 Selects the files that should be used for input

 Defines the InputSplits that break a file

 Provides a factory for Record_Reader objects that read the file

file

Input_Format

Files loaded from local HDFS store

file



Dr. Omar AbusadaITNT404

Input Format Type

 Several Input_Formats are provided with Hadoop:

InputFormat Description Key Value

TextInputFormat Default format; 
reads lines of text 
files

The byte offset 
of the line

The line contents

KeyValueInputFormat Parses lines into (K, 
V) pairs

Everything up 
to the first tab 
character

The remainder of 
the line

SequenceFileInputFormat A Hadoop-specific 
high-performance 
binary format

user-defined user-defined



Dr. Omar AbusadaITNT404

Input Splits
 An input split describes a unit of work that comprises a single map

task in a MapReduce program.

 By default, the Input_Format breaks a file up into 64MB splits.

 By dividing the file into splits, we allow several map tasks to

operate on a single file in parallel.

 If the file is very large, this can improve performance significantly

through parallelism.

 Each map task corresponds to a single input split.

file

file

Input_Format

Split Split Split

Files loaded from local HDFS store



Dr. Omar AbusadaITNT404

Record_Reader

 The input split defines a slice of work but does not describe how

to access it.

 The Record_Reader class actually loads data from its source and

converts it into (K, V) pairs suitable for reading by Mappers.

 The Record_Reader is invoked repeatedly on the input until the

entire split is consumed.

 Each invocation of the Record_Reader leads to another call of the

map function defined by the programmer.

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR



Dr. Omar AbusadaITNT404

Mapper and Reducer
 The Mapper performs the user-defined work of the first

phase of the MapReduce program

 A new instance of Mapper is created for each split

 The Reducer performs the user-defined work of the second

phase of the MapReduce program

 A new instance of Reducer is created for each partition

 For each key in the partition assigned to a Reducer, the

Reducer is called once.

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce



Dr. Omar AbusadaITNT404

Task Scheduling in MapReduce
 MapReduce adopts a master-slave architecture

 The master node in MapReduce is referred to as Job Tracker (JT)

 Each slave node in MapReduce is referred to as Task Tracker (TT)

 MapReduce adopts a pull scheduling strategy rather than a push one

 I.e., JT does not push map and reduce tasks to TTs but rather TTs pull them

by making pertaining requests
JT

T0 T1 T2

Tasks Queue

TT

Task Slots

TT

Task Slots

T0 T1



Dr. Omar AbusadaITNT404

Job_Tracker
 Job_Tracker is the soul service for submitting and tracking MapReduce jobs in Hadoop.

 Job_Tracker performs following actions in Hadoop :

 It accepts the MapReduce Jobs from client applications

 Talks to Name_Node to determine data location

 Locates available Task_Tracker Node

 Submits the work to the chosen Task_Tracker Node



Dr. Omar AbusadaITNT404

Task_Tracker
 A Task_Tracker node accepts map, reduce or shuffle operations from a Job_Tracker.

 Its configured with a set of slots, these indicate the number of tasks that it can accept.

 Job_Tracker seeks for the free slot to assign a job.

 Task_Tracker notifies the Job_Tracker about job success status.

 Task_Tracker also sends the heartbeat signals to the job tracker to ensure its availability,

it also reports the no. of available free slots with it.



Dr. Omar AbusadaITNT404

Map and Reduce Task Scheduling
• Every TT sends a heartbeat message periodically to JT encompassing a request for a

map or a reduce task to run.

I. Map Task Scheduling:

 JT satisfies requests for map tasks via attempting to schedule mappers in the area

of their input splits (i.e., it considers locality).

II. Reduce Task Scheduling:

 However, JT simply assigns the next yet-to-run reduce task to a requesting TT

regardless of TT’s network location and its implied effect on the reducer’s shuffle

time (i.e., it does not consider locality).



Dr. Omar AbusadaITNT404

Job Scheduling in MapReduce

 In MapReduce, an application is represented as a job.

 A job encompasses multiple map and reduce tasks.

 MapReduce in Hadoop comes with a choice of schedulers:

 The default is the FIFO scheduler which schedules jobs in order of submission

 There is also a multi-user scheduler called the Fair scheduler which aims to give every

user a fair share of the cluster capacity over time.



Dr. Omar AbusadaITNT404

Fault Tolerance in Hadoop
 MapReduce can guide jobs toward a successful completion even when jobs are run on a

large cluster where probability of failures increases

 The primary way that MapReduce achieves fault tolerance is through restarting tasks

 If a TT fails to communicate with JT for a period of time (by default, 1 minute in

Hadoop), JT will assume that TT in question has crashed

 If the job is still in the map phase, JT asks another TT to re-execute all Mappers that

previously ran at the failed TT

 If the job is in the reduce phase, JT asks another TT to re-execute all Reducers that

were in progress on the failed TT



Dr. Omar AbusadaITNT404

What Makes MapReduce Unique?
 MapReduce is characterized by:

1. Its simplified programming model which allows the user to quickly write and

test distributed systems

2. Its efficient and automatic distribution of data and workload across machines

3. Its flat scalability curve. Specifically, after a MapReduce program is written and

functioning on 10 nodes, very little-if any- work is required for making that

same program run on 1000 nodes



Dr. Omar AbusadaITNT404

Map Task



Dr. Omar AbusadaITNT404

Reduce Task



Dr. Omar AbusadaITNT404

MapReduce in the Cloud: AWS
 Provides a web-based interface and command-line tools for running

Hadoop jobs on Amazon EC2 (Amazon Elastic Compute Cloud)

 Data stored in Amazon S3 (Amazon Simple Storage Service)

 Monitors job and shuts down machines after use

 Small extra charge on top of EC2 pricing

 An EC2 instance is like a remote computer running Windows or Linux and on which you can

install whatever software you want, including a Web server running PHP code and a

database server.

 Amazon S3 is just a storage service, typically used to store large binary files.



Dr. Omar AbusadaITNT404

Amazon Elastic MapReduce



Dr. Omar AbusadaITNT404

Elastic MapReduce Workflow



Dr. Omar AbusadaITNT404

Elastic MapReduce Workflow



Dr. Omar AbusadaITNT404

Elastic MapReduce Workflow



Dr. Omar AbusadaITNT404

Elastic MapReduce Workflow



Dr. Omar AbusadaITNT404

The central component of Amazon EMR
 The central component of Amazon EMR is the cluster.

 A cluster is a collection of Amazon Elastic Compute

Cloud (Amazon EC2) instances.

 Each instance in the cluster is called a node.

 Each node has a role within the cluster, referred to as

the node type. Amazon EMR also installs different

software components on each node type, giving each

node a role in a distributed application like Apache

Hadoop.



Dr. Omar AbusadaITNT404

The node types in Amazon EMR are as follows: 
 Master node: A node that manages the cluster by running software components to coordinate

the distribution of data and tasks among other nodes—collectively referred to as slave nodes—

for processing. The master node tracks the status of tasks and monitors the health of the cluster.

 Core node: A slave node with software components that run tasks and store data in the Hadoop

Distributed File System (HDFS) on your cluster.

 Task node: A slave node with software components that only run tasks. Task nodes are

optional.



… Thank you … 

Dr. Omar AbusadaITNT404


