Encryption Algorithms & Protocols

Symmetric key Crypto - Block cipher

Dr. Omar Abusada E-mail: abossada1@gmail.com

Block Cipher (Iterated)

- Plaintext and Ciphertext consist of fixed-sized blocks.
- Ciphertext obtained from plaintext by iterating a round function.
- Input to round function consists of key and output of previous round.

Dr. Omar Abusada

• Usually implemented in software.

Feistel Cipher: Encryption

- Feistel cipher is a type of block cipher, not a specific block cipher.
- Split plaintext block into left and right halves: $P = (L_0, R_0)$
- For each round *i* = 1,2,3, , *n* compute:
- $L_i = R_{i-1}$
- $R_i = L_{i-1} \bigoplus F(R_{i-1}, K_i)$, where F is round function and K_i is **subkey**
- Ciphertext: $C = (L_n, R_n)$.

ITNT314

Feistel Cipher: Decryption

- Start with Ciphertext: $C = (L_n, R_n)$.
- For each round *i* = *n*, *n* − 1, , 2,1*compute*:
- $R_{i-1} = L_i$
- $L_{i-1} = R_i \bigoplus F(R_{i-1}, K_i)$, where F is round function and K_i is **subkey**
- Plaintext: $P = (L_0, R_0)$.
- Formula "works" for any function F
- But only secure for certain functions F

ITNT314

Feistel Cipher: Example

- Plain text [011110100001].
- key = $[1^{st}$ to $2^{nd} 2^{nd}$ to $3^{rd} 3^{rd}$ to 1^{st}]
- $L_0 = [0\ 1\ 1\ 1\ 1\ 0], \ R_0 = [\underline{1\ 0\ 0}\ \underline{0\ 0\ 1}],$
- <u>1st iteration :</u>
- $L_1 = R_0 = [1\ 0\ 0\ 0\ 1], R_0 = [1\ 0\ 0\ 0\ 1],$
- $F(R_0, K_1) = F(R_0, K_1) = [0 \ 1 \ 0 \ 1 \ 0 \ 0]$ [1st to 2nd -- 2nd to 3rd -- 3rd to 1st]
- $R_1 = L_0 \oplus F(R_0, K_1) = [0 \ 1 \ 1 \ 1 \ 1 \ 0] \oplus [0 \ 1 \ 0 \ 1 \ 0 \ 0] = [0 \ 0 \ 1 \ 0 \ 1 \ 0]$
- Ciphertext= [100001001010]

Same procedure can go to the 2nd, 3rd and so on iterations

ITNT314

Data Encryption Standard

- DES developed in 1970's.
- Based on IBM's Lucifer cipher.
- DES was U.S. government standard.
- DES development was controversial.
 - NSA secretly involved.
 - Design process was secret.
 - Key length reduced from 128 to 56 bits.

Dr. Omar Abusada

• Subtle changes to Lucifer algorithm.

ITNT314

DES Numerology

- DES is a Feistel cipher with...
 - 64 bit block length.
 - 56 bit key length.
 - 16 rounds.
 - 48 bits of key used each round (Subkey).
- Each round is simple (for a block cipher).
- Security depends heavily on "S-boxes".
 - Each S-boxes maps 6 bits to 4 bits.

ITNT314

 \bigcap one Round of DES

Triple DES

- Today, 56 bit DES key is too small.
 - Exhaustive key search is feasible.
- But DES is everywhere, so what to do?
- Triple DES or 3DES (112 bit key).
 - $C = E(D(E(P, K_1), K_2), K_1).$
 - $P = D(E(D(C, K_1), K_2), K_1).$
- Encrypt-Decrypt-Encrypt with 2 keys

ITNT314

Advanced Encryption Standard AES

- The AES algorithm, also known as (Rijndael Algorithm) is a symmetric block cipher algorithm that takes block size of 28 bits and converts them into ciphertext using Key of 128, 192 or 256 bits (independent of block size)
- AES performs on byte data, instead of bit data.
- Number of rounds depends on Key length
 - 128 bit Key length_____ uses _____ 10 rounds
 - 192 bit Key length_____ uses _____ 12 rounds
 - 256 bit Key length_____ uses _____ 14 rounds

ITNT314

DES vs AES

DES

- Key length 56 bits
- Block size 64 bits
- Fixed number of rounds (16)
- Implemented slower

AES

- Key length 128/192/256 bits
- Block size 128 bits
- Number of rounds dependent on key length
- Implemented faster

ITNT314

A Few Other Block Ciphers

- International Data Encryption Algorithm (IDEA)
- Invented by James Massey
- One of the giants of modern crypto
- IDEA has 64-bit block, 128-bit key
- IDEA uses mixed-mode arithmetic
- Combine different math operations
 - IDEA the first to use this approach
 - Frequently used today

ITNT314

Blowfish

- Blowfish encrypts 64-bit blocks
- Key is variable length, up to 448 bits
- Invented by Bruce Schneier
- Almost a Feistel cipher
- Ri = Li-1 ⊕ Ki
- $\text{Li} = \text{Ri-1} \oplus F(\text{Li-1} \oplus \text{Ki})$

- The round function F uses 4 S-boxes
 - Each S-box maps 8 bits to 32 bits
- Key-dependent S-boxes
 - S-boxes determined by the key

Dr. Omar Abusada

ITNT314

... Thank you ...

