
FACULTY OF INFORMATION TECHNOLOGY

Distributed Systems

Naming



Naming: Names, identifiers, and addresses

Naming

Essence
Names are used to denote entities in a distributed system. To operate on an
entity, we need to access it at an access point. Access points are entities that
are named by means of an address.

Note
A location-independent name for an entity E , is independent from the
addresses of the access points offered by E .

2 / 46



Naming: Names, identifiers, and addresses

Identifiers

Pure name
A name that has no meaning at all; it is just a random string. Pure names can
be used for comparison only.

Identifier: A name having some specific properties
1 An identifier refers to at most one entity.
2 Each entity is referred to by at most one identifier.
3 An identifier always refers to the same entity (i.e., it is never reused).

Observation
An identifier need not necessarily be a pure name, i.e., it may have content.

3 / 46



Naming: Flat naming Simple solutions

Forwarding pointers

When an entity moves, it leaves behind a pointer to its next location

Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers

Update a client’s reference when present location is found

Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

Long chains are not fault tolerant
Increased network latency at dereferencing

Forwarding pointers 5 / 46



Naming: Flat naming Simple solutions

Example: SSP chains

The principle of forwarding pointers using (client stub, server stub)

Process P1

Process P2

Process P3

Process P4 Object

Identical client stub

Server stub

Identical
server stub

Interprocess
communication

Local
invocation

Stub cs* refers to
same server stub as
stub cs.

Client stub cs*

Client stub cs

Forwarding pointers 6 / 46



Naming: Flat naming Simple solutions

Example: SSP chains

Redirecting a forwarding pointer by storing a shortcut in a client stub

Invocation
request is
sent to object

Server stub at object's
current process returns
the current location

Client stub sets
a shortcut

Server stub is no
longer referenced
by any client stub

(a) (b)

Forwarding pointers 7 / 46



Naming: Flat naming Home-based approaches

The principle of mobile IP

Host's current location

Client's
location

1. Send packet to host at its home

2. Return address
of current location

3. Tunnel packet to
current location

4. Send successive packets
to current location

Host's home
location

9 / 46



Naming: Flat naming Hierarchical approaches

Hierarchical Location Services (HLS)

Basic idea
Build a large-scale search tree for which the underlying network is divided into
hierarchical domains. Each domain is represented by a separate directory
node.

Principle

A leaf domain, contained in S

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
(S is contained in T)

Top-level
domain T

The root directory
node dir(T)

16 / 46



Naming: Flat naming Hierarchical approaches

HLS: Tree organization
Invariants

Address of entity E is stored in a leaf or intermediate node
Intermediate nodes contain a pointer to a child if and only if the subtree
rooted at the child stores an address of the entity
The root knows about all entities

Storing information of an entity having two addresses in different leaf domains

Domain D2
Domain D1

M

Field with no data

Location record
with only one field,
containing an address

Field for domain
dom(N) with
pointer to N

Location record
for E at node M

N

17 / 46



Naming: Flat naming Hierarchical approaches

HLS: Lookup operation

Basic principles
Start lookup at local leaf node
Node knows about E ) follow downward pointer, else go up
Upward lookup always stops at root

Looking up a location

Domain D

M

Node has no
record for E, so
that request is
forwarded to
parent

Look-up
request

Node knows
about E, so request
is forwarded to child

18 / 46



Naming: Structured naming Name spaces

Name space
Naming graph
A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

A general naming graph with a single root node

elke

.procmail mbox

steen

home keys

"/home/steen/mbox"

"/keys"
"/home/steen/keys"

Data stored in n1

Directory node

Leaf node

n2: "elke"
n3: "max"
n4: "steen"

max

keys

n1

n2

n5

n0

n3 n4

Note
A directory node contains a table of (node identifier, edge label) pairs.

23 / 46



Naming: Structured naming Name resolution

Name linking

The concept of a symbolic link explained in a naming graph

.procmail

"/home/steen/keys"

"/keys"n1

n2

n5

n0

n3

n6

mbox "/keys"

Data stored in n6
n4

elke steen

home keys

Data stored in n1

n2: "elke"
n3: "max"
n4: "steen"

max

keys

Observation
Node n5 has only one name

Linking and mounting 27 / 46



Naming: Structured naming The implementation of a name space

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels
Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations
Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.
Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.

Name space distribution 30 / 46



Naming: Structured naming The implementation of a name space

Name-space implementation
An example partitioning of the DNS name space, including network files

org net
jp us

nl

oracle

eng

yale

eng

ai linda

robot

acm

jack jill

ieee

keio

cs

cs

pc24

co

nec

csl

uva vu

cs

ftp www

ac

com edu
gov mil

pub

globule

index.htm

Mana-
gerial
layer

Adminis-
trational

layer

Global
layer

Zone

Name space distribution 31 / 46



Naming: Structured naming The implementation of a name space

Name-space implementation

A comparison between name servers for implementing nodes in a name space

Item Global Administrational Managerial
1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate
4 Lazy Immediate Immediate
5 Many None or few None
6 Yes Yes Sometimes
1: Geographical scale 4: Update propagation
2: # Nodes 5: # Replicas
3: Responsiveness 6: Client-side caching?

Name space distribution 32 / 46



Naming: Structured naming The implementation of a name space

Iterative name resolution

Principle
1 resolve(dir , [name1, ...,nameK ]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir ,name1) ! dir1, returning the identification

(address) of Server1, which stores dir1.
3 Client sends resolve(dir1, [name2 , ...,nameK ]) to Server1, etc.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. [nl,vu,cs,ftp]

2. #[nl], [vu,cs,ftp]

3. [vu,cs,ftp]

4. #[vu], [cs,ftp]

5. [cs,ftp]

6. #[cs], [ftp]

ftp

cs

vu

nl

Nodes are
managed by
the same server

7. [ftp]

8. #[ftp]

#[nl,vu,cs,ftp][nl,vu,cs,ftp]

Implementation of name resolution 33 / 46



Naming: Structured naming The implementation of a name space

Recursive name resolution

Principle
1 resolve(dir , [name1, ...,nameK ]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir ,name1) ! dir1, and sends

resolve(dir1, [name2 , ...,nameK ]) to Server1, which stores dir1.
3 Server0 waits for result from Server1, and returns it to client.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. [nl,vu,cs,ftp]

2. [vu,cs,ftp]

7. #[vu,cs,ftp]
3. [cs,ftp]

6. #[cs,ftp]
4. [ftp]

5. #[ftp]

#[nl,vu,cs,ftp]

8. #[nl,vu,cs,ftp]

[nl,vu,cs,ftp]

Implementation of name resolution 34 / 46


