Naming

Distributed Systems

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Naming: Names, identifiers, and addresses

Naming

Essence

Names are used to denote entities in a distributed system. To operate on an
entity, we need to access it at an access point. Access points are entities that

are named by means of an address.

A location-independent name for an entity E, is independent from the
addresses of the access points offered by E.

Naming: Names, identifiers, and addresses

|dentifiers

Pure name

A name that has no meaning at all; it Is just a random string. Pure names can
be used for comparison only.

ldentifier: A name having some specific properties

@ An identifier refers to at most one entity.
© Each entity is referred to by at most one identifier.
© An identifier always refers to the same entity (i.e., it is never reused).

Observation
An identifier need not necessarily be a pure name, i.e., it may have content.

Naming: Flat naming Simple solutions

Forwarding pointers

When an entity moves, it leaves behind a pointer to its next location

@ Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers

@ Update a client’s reference when present location is found

@ Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

@ Long chains are not fault tolerant
@ Increased network latency at dereferencing

Naming: Flat naming

Example: SSP chains

The principle of forwarding pointers using (client stub, server stub)

Process P2 Stub cs* refers to

CIieht stub cs*

same server stub as

/ stub cs.

Process P1 Server stub —ly

|
Client stub cs

N

Dl

SHIX

j Process P3
\ _~ ldentical client stub

Process P4

\

>

(V1

Local
Invocation
Interprocess
communication ldentical /
server stub

Obiject

Simple solutions

Naming: Flat naming Simple solutions

Example: SSP chains

Redirecting a forwarding pointer by storing a shortcut in a client stub

Invocation Server stub is no
request is longer referenced_

sent to object ’Z :>\ by any client stub i :>\
e b 3

Client stub sets
a shortcut

N

Server stub at object's
current process returns
the current location

(a) (b)

Naming: Flat naming Home-based approaches

The principle of mobile IP

Host's home

location 1. Send packet to host at its home
- J

% L'ZA Dﬂ
mturn address

of current location

Client's

S
N o location

N
e D
\ 3. Tunnel packet to \\ Cﬁﬁ
A\ current location = x

Host's current location ﬁ

4. Send successive packets
to current location S

Naming: Flat naming Hierarchical approaches

Hierarchical Location Services (HLS)

Basic idea

Build a large-scale search tree for which the underlying network is divided into
hierarchical domains. Each domain is represented by a separate directory
node.

Principle

The root directory
node dir(T)

—
-—
—
-
”
-

Top-level
domain T

__————_—_~~
—
—
~
~

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
/ (S is contained in T)

-
_——________———_—_—_—_———_—_—_—_———_ _—_—_————_—_—_——

A leaf domain, contained in S

Naming: Flat naming Hierarchical approaches

HLS: Tree organization

Invariants

@ Address of entity E is stored in a leaf or intermediate node

@ Intermediate nodes contain a pointer to a child if and only if the subtree
rooted at the child stores an address of the entity

@ The root knows about all entities

vy

Storing information of an entity having two addresses in different leaf domains

Field with no data

Field for domain ~__--——_ |
d:)err?(No)rwi?rznam g \7\/\ /Locatlon record
pointer to N : . : for E at node M @ \
‘\ /I ~~~~~~~~ M ~
v N

Location record
with only one field,
containing an address

DO OO0
\ \

EClucIlLBA Domain D2

Naming: Flat naming Hierarchical approaches

HLS: Lookup operation

Basic principles

@ Start lookup at local leaf node
@ Node knows about E = follow downward pointer, else go up

@ Upward lookup always stops at root

Looking up a location

Node knows
about E, so request
Node has no is forwarded to child
record for E, so @ .

that request is
forwarded to T 5 ,

parent '\ , ~~__
3)
O ®
== ___, -5\\
// \\
I |
\ I
~aiin /
\
Ly O OO0 @
Look- | :
ks Domain D
request

Naming: Structured naming Name spaces

Name space

Naming graph

A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

A general naming graph with a single root node

Data stored in n1 n0
(n2: "elke" | home keys

n3: "max” "kevs"
n4: "steen" n1 no5 eys

N J "lhome/steen/keys"
elk/max \teen
O Leaf node

@ n keys

Directory node
procmail mbox
"/home/steen/mbox"
Note

A directory node contains a table of (node identifier, edge label) pairs.

Naming: Structured naming Name resolution

Name linking

The concept of a symbolic link explained in a naming graph

Data stored in n1 n0
n2: "elke"” home keys

n3: "max"
n4: "steen” n1 nd) "/keys"

_ J
elk/max \teen

@ Y

.procmail ﬂox

O

Data stored in n6

Node n5 has only one name

Naming: Structured naming The implementation of a name space

Name-space implementation

Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

@ Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

@ Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

@ Managerial level: Consists of low-level directory nodes within a single

administration. Main issue is effectively mapping directory nodes to local
name servers.

Naming: Structured naming

Name-space implementation

The implementation of a name space

An example partitioning of the DNS name space, including network files

Global
layer

trational

Adminis-<
layer

Mana-
gerial
layer

Zone —
\\lndex.htm

-
N~ -

Naming: Structured naming

Name-space implementation

A comparison between name servers for implementing nodes in a name space

The implementation of a name space

ltem | Global Administrational | Managerial

1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate

4 Lazy Immediate Immediate

5 Many None or few None

6 Yes Yes Sometimes
1: Geographical scale | 4. Update propagation

2. # Nodes 5: # Replicas

3: Responsiveness 6: Client-side caching?

Naming: Structured naming The implementation of a name space

lterative name resolution

Principle

@ resolve(dir,[namey, ...,namek]) sent to Server, responsible for dir

@ Server, resolves resolve(dir,name;) — diry, returning the identification
(address) of Server;, which stores dir;.

© Client sends resolve(dir;,[name.,...,namek]) to Server;, etc.

1. [nl,vu,cs,ftp]

> Root
e #[nl], [vu,cs,ftp] name server

. y ’ vy - e &] |
3. [VU’CS’ftp] > Name server | /1
< _ nl node

Client's 4. #vwu), [cs,ftp] L~ | TN ;
name _ BRI/
resolver | 9. [CS,ftp »| Name server ;
< d E
6. #[cs], [ftp] vy noee

7. [ftp] » Nameserver | |

<3 HIp] cs node

[nI,vu,cs,ftp]T ¢ #[nl,vu,cs,ftp] Nodes are / I
managed by 5

the same server -l

Naming: Structured naming The implementation of a name space

Recursive name resolution

Principle

@ resolve(dir,[namey,...,namey]) sent to Server, responsible for dir

@ Servery resolves resolve(dir,name;) — dirs, and sends
resolve(diry,[name>,...,nameg|) to Servery, which stores dir;.

© Server, waits for result from Server;, and returns it to client.

1. [nl,vu,cs,ftp]

Root

>
name server DZ. [Vu,cs,ftp]

7. #[vu,cs,ftp] C Nan|1e Sgrver
Client's nt nhode 3. [csfitp]
name
resolver 6. #[cs,ftp] Name server

vu node 4. [ftp]
C Name server D

CS node

<

8. #[nl,vu,cs,ftp]

5. #[ftp]

[nI,vu,cs,ftp]T i#[nl,vu,cs,ftp]

