
ITMC411

Security in mobile
computing

LECTURE 5

Mobile Vulnerability Scanners
and Testing Tools

Common mobile application

vulnerabilities

 Insecure data storage

 Memory leaks and corruption

 Supply chain vulnerabilities

Common mobile application
vulnerabilities

Insecure Data Storage:

 Sensitive data (e.g., user credentials, financial info)

improperly secured.

 Risks: Weak encryption, poorly protected database access,

and exposed cookie storage.

 Vulnerable to attacks, especially on rooted devices or

reverse-engineered apps.

Solutions:

 Use encryption and secure authentication.

 Conduct regular security audits.

Common mobile application
vulnerabilities

Memory Leaks and Corruption:

• Common in apps using native languages like C, C++,

Objective-C.

• Memory issues (e.g., leaks, buffer overflows) lead to app

crashes or security exploits.

Risks:

• Can lead to denial-of-service (DoS) attacks.

Solutions:

• Apply best coding practices.

• Use Static Application Security Testing (SAST).

Common mobile application
vulnerabilities

Supply Chain Vulnerabilities:

• Third-party components (libraries, frameworks) may contain

bugs or malicious code.

• Example: ParkMobile breach — 21 million users' data

compromised via a third-party vulnerability.

Solutions:

• Test third-party components thoroughly.

• Keep all components updated.

• Implement a "shift-left" security approach during

development.

Types of mobile app security

Tests

 Vulnerability scanning

 Penetration testing

 Risk assessment

 Security posture assessment

Types of mobile app security Tests

Vulnerability Scanning

• Purpose: Uses automated tools to find

vulnerabilities in the app ecosystem.

• Focus: Looks for known vulnerabilities, particularly

in software dependencies and common code

loopholes.

• Output: Generates reports for developers/QA teams

Types of mobile app security Tests

Penetration Testing

 Purpose: Simulates attacks to identify weaknesses in

the app.

 Key Difference: Involves ethical hackers, providing

realistic, actionable threat data.

 Output: More detailed information on exploit

methods and loophole locations compared to

vulnerability scanning.

Types of mobile app security Tests

Risk Assessment

• Purpose: Evaluates the risks across people, processes,

and tools in the app's ecosystem.

• Steps:

• Catalog assets.

• Identify potential threats.

• Analyze how vulnerabilities can be exploited.

• Output: Provides insights into the severity and

likelihood of risks, helping inform mitigation strategies.

Types of mobile app security Tests

Security Posture Assessment

 Purpose: Prioritizes risks from the risk assessment
and develops strategies to improve the app's
security posture.

 Strategies: May include stronger authentication,
patching software, incident response plans, and
continuous monitoring.

 Compliance: Ensures alignment with
regulatory/industry standards, protecting against
legal/financial penalties.

Static and Dynamic Analysis

• Static application security testing (SAST)

 Tests the application code for vulnerabilities before

running it in an app.

 Tools such as Klocwork and Checkmarx are useful for

achieving SAST.

• Dynamic application security testing (DAST)

 focuses on a running app.

 DAST tools scan apps to check for any loopholes that

may lead to security risks.

 An example of a DAST tool for mobile is HCL AppScan.

Static and Dynamic Analysis

Top mobile app security assessment
Tools

1. QARK
2. Data Theorem
3. App-Ray
4. Checkmarx
5. NowSecure
6. Appknox
7. Fortify on Demand
8. HCL AppScan
9. AppSweep
10.Veracode
11.Synopsys
12.Ostorlab

QARK
Purpose: Open-source tool for Android app security.

Key Features:

• Static code analysis, permission mapping, manifest

analysis.

• Combines static and dynamic analysis.

Pros:

• Free and open-source.

• Generates detailed reports.

• Integrates with CI systems.

Cons:

• Android-only.

• Requires technical expertise.

Data Theorem by Mobile Secure

Purpose: Comprehensive tool for Android and iOS security.

Key Features:

o Static and dynamic analysis, vulnerability assessment,

compliance testing.

o Real-time behavior monitoring.

Pros:

o Supports both iOS and Android.

o Continuous monitoring.

Cons:

o High pricing.

o Additional configuration for complex architectures.

App-Ray
 Purpose: Security testing for iOS, Android, and

Windows.

 Key Features:

o Static and dynamic analysis for vulnerabilities

and data leaks.

 Pros:

o Supports multiple platforms.

o User-friendly with continuous monitoring.

 Cons:

o Limited community support.

o Requires an internet connection for analysis.

Checkmarx
 Purpose: Code-level security testing tool.

 Key Features:

o Comprehensive SAST (Static Application Security

Testing) with manual and automated options.

 Pros:

o Seamless integration with development

workflows.

o Multi-language support.

 Cons:

o Expensive.

o Requires setup time.

NowSecure
 Purpose: Security testing for iOS and Android.

 Key Features:

o Dynamic analysis, real-time monitoring, network

and storage vulnerability detection.

 Pros:

o Actionable reports with clear steps.

o Advanced mobile forensics.

 Cons:

o Limited language support.

o Higher cost for large app portfolios.

Appknox
 Purpose: Cloud-based security tool for Android and

iOS.

 Key Features:

o Automated testing with focus on vulnerabilities

and improper authentication.

 Pros:

o Easy-to-use interface.

o Integration with CI/CD tools.

 Cons:

o Limited to cryptographic vulnerabilities.

o Higher pricing for advanced features.

Fortify on Demand
 Purpose: Cloud-based security testing by Micro

Focus.

 Key Features:

o Combines static and dynamic analysis, focusing

on code and network vulnerabilities.

 Pros:

o Seamless integration with dev environments.

o Detailed reports.

 Cons:

o High pricing.

o Complex configuration for large apps.

AppSweep
 Purpose: Cloud-based tool for Android and iOS.

 Key Features:

o Automated testing with focus on data leakage

and insecure communication.

 Pros:

o Easy-to-use with CI/CD integration.

 Cons:

o Limited iOS support.

o Higher pricing for advanced features.

HCL AppScan
 Purpose: Enterprise-grade tool for Android and iOS.

 Key Features:

o Comprehensive vulnerability scanning with

detailed reports.

 Pros:

o Strong integration with CI/CD.

o Advanced automation.

 Cons:

o Complex setup.

o High cost for small enterprises.

Veracode
 Purpose: Enterprise-grade tool for Android and iOS.

 Key Features:

o Combines static and dynamic analysis with

network communication security.

 Pros:

o Detailed, actionable insights.

o Strong dev environment integration.

 Cons:

o Expensive for small businesses.

o Requires setup for complex architectures.

Synopsys
 Purpose: Security testing tool for Android, iOS, and

Windows.

 Key Features:

o Combines static, dynamic, and interactive

analysis.

 Pros:

o Comprehensive testing capabilities.

o Supports multiple platforms.

 Cons:

o Expensive.

o Requires complex setup.

Ostorlab
• Purpose: Security testing tool for Android, iOS

• Key Features:

o Provides static, dynamic analysis.

 Pros:

o Comprehensive Security Analysis.

o User-Friendly Interface.

 Cons:

o Limited Features in Free Version.

o Performance Issues.

Top mobile app security assessment
Tools

Smali
What is Smali?

• Smali : low-level assembly-like language designed
for the Dalvik Virtual Machine (VM)

• It serves as an intermediate language between
Java source code and the executable code on
Android devices.

• Smali is mainly used in reverse engineering,
particularly for analyzing or modifying Android
applications.

Smali
Common Uses of Smali

1. Reverse Engineering: Modify Android APK files after

decompiling to change their behavior.

2. Malware Analysis: Used by researchers to

understand the behavior of malware on Android.

3. Debugging: Applied when the original source code is

unavailable, helping to debug apps.

4. Removing Ads/License Restrictions: Modify apps to

remove unwanted features or protections by altering

DEX files.

Smali

Key Tools for Working with Smali

• Baksmali: Decompiles DEX files into

Smali code.

• Smali Tool: Recompiles Smali code

back into DEX format.

• JEB & APKTool: Common tools for

decompiling/recompiling APK files and

working with Smali code.

Smali
How to Work with Smali

• Use APKTool to extract APK resources,

including DEX files, which can be

converted to Smali code using Baksmali.

• After modifying the Smali code, use

Smali Tool to recompile the DEX file,

and APKTool to repackage it back into

APK format.

Tools for Working with Smali

Working with Smali often involves various

tools that facilitate

• decompiling

• editing

• reassembling

• analyzing APK files and .dex bytecode

for Android applications.

Tools for Working with Smali

ApkTool

Purpose:

• Decompiles and reassembles APK files,

• converting .dex files into Smali code and allowing for

modification of both code and resources.

Usage:

• Decompile: apktool d app.apk (creates Smali files and

resources).

• Recompile: apktool b app_folder (rebuilds the APK after

edits).

Tools for Working with Smali

JEB (Java Executable Bytecode)

Purpose:

• Professional-grade Android decompiler

• converting .dex files into Smali and Java code

• performing interactive code analysis.

Features:

• Interactive GUI with decompiled Java, Smali

• Advanced support for obfuscation and native code

analysis.

• Python scripting support for automating tasks.

Tools for Working with Smali

JADX (Java Decompiler for Android)

Purpose:

• A decompiler that converts .dex files into readable

Java code, with some support for viewing Smali.

Usage:

• Open APK: Load an APK file in jadx-gui to explore the

code.

• Export Smali: View Smali code for methods/classes

when needed.

Tools for Working with Smali

Baksmali and Smali

Purpose:

• Tools specifically for disassembling (baksmali) and

assembling (smali) .dex files.

Usage:

• Disassemble: baksmali disassemble app.dex (produces

.smali files).

• Assemble: smali assemble smali_folder -o classes.dex

(compiles .smali files into a .dex file).

Tools for Working with Smali

Android Studio (with JD-GUI or JADX plugin)

Purpose:

• While Android Studio isn’t a Smali editor, it can be

configured with plugins to support Java decompilation

and some Smali viewing.

Tools for Working with Smali

JD-GUI

Purpose:

• A standalone Java decompiler that can be used with

dex2jar to inspect Java code for analysis.

Usage:

• Open JAR file: Load the .jar file created with dex2jar to

view decompiled Java code.

Tools for Working with Smali

dex2jar

Purpose:

• Converts .dex files into .jar files, which can then be

decompiled into Java using a decompiler like JD-GUI or JADX.

Usage:

• Convert: d2j-dex2jar app.dex (generates a .jar file from the

.dex file).

Workflow Example with Smali
Editing

1. Decompile APK: Use apktool d app.apk to get .smali files.

2. Edit Smali Code: Open .smali files in a text editor (like

VSCode) and make changes.

3. Recompile APK: Use apktool b app_folder to rebuild the

modified APK.

4. Sign and Install APK: Use jarsigner or apksigner to sign

the APK and then install it on an Android device for testing.

