CRYPTOGRAPHIC ALGORITHMS AND PROTOCOLS

PART I: CRYPTOGRAPHY

3. Symmetric Key Crypto 3.1. Stream Ciphers

Symmetric Key Crypto

- □ Stream cipher based on one-time pad
 - Except that key is relatively short
 - Key is stretched into a long **keystream**
 - Keystream is used just like a one-time pad
- □ Block cipher based on codebook concept
 - Block cipher key determines a codebook
 - Each key yields a different codebook
 - Employs both "confusion" and "diffusion"

Dr. Ibrahim Almerhag

Stream Ciphers

- Once upon a time, not so very long ago, stream ciphers were the king of crypto
- □ Today, not as popular as block ciphers
- □ We'll discuss two stream ciphers...
- □ A5/1
 - Based on shift registers
 - Used in GSM mobile phone system

□ RC4

- Based on a changing lookup table
- Used in many places

A5/1: Shift Registers

A5/1 uses 3 shift registers

X: 19 bits (*x*₀,*x*₁,*x*₂,...,*x*₁₈)
Y: 22 bits (*y*₀,*y*₁,*y*₂,...,*y*₂₁)
Z: 23 bits (*z*₀,*z*₁,*z*₂,...,*z*₂₂)

\Box Total: 64 bits \rightarrow key

A5/1: Keystream

□ At each step: $m = maj(x_8, y_{10}, z_{10})$ • Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1 \Box If $x_8 = m$ then X steps $x_i = x_{i-1}$ for i = 18, 17, ..., 1 and $x_0 = t$ $\circ t = X_{13} \oplus X_{16} \oplus X_{17} \oplus X_{18}$ \Box If $V_{10} = m$ then Y steps • $y_i = y_{i-1}$ for i = 21, 20, ..., 1 and $y_0 = t$ $\circ t = y_{20} \oplus y_{21}$ \Box If $z_{10} = m$ then Z*steps* $z_i = z_{i-1}$ for i = 22, 21, ..., 1 and $z_0 = t$ $\circ t = \mathbb{Z}_7 \oplus \mathbb{Z}_{20} \oplus \mathbb{Z}_{21} \oplus \mathbb{Z}_{22}$ \Box Keystream bit is $X_{18} \oplus Y_{21} \oplus Z_{22}$

Each variable here is a single bit

Key is used as **initial fill** of registers

Each register steps (or not) based on maj (X_8, Y_{10}, Z_{10}) Keystream bit is XOR of rightmost bits of registers

- □ In this example, $m = maj(x_8, y_{10}, z_{10}) = maj(1,0,1) = 1$
- □ Register X steps, Y does not step, and Z steps
- Keystream bit is XOR of right bits of registers
- $\square \,$ Here, keystream bit will be $0 \oplus 1 \oplus 0 = 1$

Part I: Crypto

Stream Ciphers

Shift Register Crypto

- □ Shift register crypto efficient in hardware
- □ Often, slow if implement in software
- □ In the past, very popular
- Today, more is done in software due to fast processors
- □ Shift register crypto still used some
 - **Gamma** Resource-constrained devices

- □ A self-modifying lookup table
- □ Table always contains a permutation of the byte values 0,1,...,255
- □ Initialize the permutation using key
- □ At each step, RC4 does the following
 - Swaps elements in current lookup table
 - Selects a keystream byte from table
- □ Each step of RC4 produces a **byte**
 - Efficient in software
- Each step of A5/1 produces only a bit
 Efficient in hardware

RC4 Initialization

```
S[] is permutation of 0,1,...,255
key[] contains N bytes of key
```

```
for i = 0 to 255
      S[i] = i
      K[i] = key[i \pmod{N}]
next i
i = 0
for i = 0 to 255
      j = (j + S[i] + K[i]) \mod 256
      swap(S[i], S[j])
next i
i = j = 0
```

RC4 Keystream

- For each keystream byte, swap elements in table and select byte
 - $i = (i + 1) \mod 256$ $j = (j + S[i]) \mod 256$ swap(S[i], S[j]) $t = (S[i] + S[j]) \mod 256$ keystreamByte = S[t]
- □ Use keystream bytes like a one-time pad
- Note: first 256 bytes should be discarded,
 Otherwise, related key attack exists

Dr. Ibrahim Almerhag

Stream Ciphers

- □ Stream ciphers were popular in the past
 - Efficient in hardware
 - Speed was needed to keep up with voice, etc.
 - Today, processors are fast, so software-based crypto is usually more than fast enough
- □ Future of stream ciphers?
 - $_{\odot}\,$ Shamir declared "the death of stream ciphers"
 - May be greatly exaggerated...
 - Today, stream ciphers are more appropriate than block ciphers for certain applications; like wireless devices, severely resource-constrained devices, and extremely high data-rate systems.

