
Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

2021 __2020

Lecture 4

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-3

Chapter 2: application layer

our goals:

 conceptual,
implementation aspects
of network application
protocols

 transport-layer
service models

 client-server
paradigm

 peer-to-peer
paradigm

 learn about protocols by
examining popular
application-level
protocols
 HTTP

 FTP

 SMTP

 DNS

Application Layer 2-4

Some network apps

 e-mail

 web

 text messaging

 remote login

 P2P file sharing

 multi-user network games

 streaming stored video
(YouTube, Hulu, Netflix)

 voice over IP (e.g., Skype)

 real-time video
conferencing

 social networking

 …

 …

Application Layer 2-5

Creating a network app

write programs that:

 run on (different) end systems

 communicate over network

 e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

 network-core devices do not
run user applications

 applications on end systems
allows for rapid app
development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Application Layer 2-6

Application architectures

possible structure of applications:

 client-server

 peer-to-peer (P2P)

Application Layer 2-7

Client-server architecture

server:
 always-on host

 permanent IP address

 data centers for scaling

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate directly
with each other

client/server

Application Layer 2-8

P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers request service from
other peers, provide service
in return to other peers

 self scalability – new
peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses

 complex management

peer-peer

Application Layer 2-9

Processes communicating

process: program running
within a host

 within same host, two
processes communicate
using inter-process
communication (defined by
OS)

 processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

 aside: applications with P2P

architectures have client

processes & server

processes

clients, servers

Application Layer 2-10

Sockets

 process sends/receives messages to/from its socket

 socket analogous to door

 sending process shoves message out door

 sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-11

Addressing processes

 to receive messages,
process must have identifier

 host device has unique 32-
bit IP address

 Q: does IP address of host
on which process runs
suffice for identifying the
process?

 identifier includes both IP
address and port numbers
associated with process on
host.

 example port numbers:
 HTTP server: 80

 mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12

 port number: 80

 more shortly…

 A: no, many processes
can be running on same
host

Application Layer 2-12

App-layer protocol defines

 types of messages
exchanged,

 e.g., request, response

 message syntax:

 what fields in messages
& how fields are
delineated

 message semantics

 meaning of information
in fields

 rules for when and how
processes send & respond
to messages

open protocols:

 defined in RFCs

 allows for interoperability

 e.g., HTTP, SMTP

proprietary protocols:

 e.g., Skype

Application Layer 2-13

What transport service does an app need?

data integrity

 some apps (e.g., file transfer,
web transactions) require

100% reliable data transfer

 other apps (e.g., audio) can
tolerate some loss

timing

 some apps (e.g., Internet
telephony, interactive
games) require low delay
to be “effective”

throughput

 some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

security

 encryption, data integrity,

…

Application Layer 2-14

Transport service requirements: common apps

application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

time sensitive

no

no

no

yes, 100’s

msec

yes, few secs

yes, 100’s

msec

yes and no

Application Layer 2-15

Internet transport protocols services

TCP service:
 reliable transport between

sending and receiving
process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantee, security

 connection-oriented: setup
required between client and
server processes

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-16

Internet apps: application, transport protocols

application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

Securing TCP

TCP & UDP

 no encryption

 Clear text passwds
sent into socket
traverse Internet in
clear text

SSL

 provides encrypted
TCP connection

 data integrity

 end-point
authentication

SSL is at app layer

 Apps use SSL libraries,
which “talk” to TCP

SSL socket API

 Clear text passwds
sent into socket
traverse Internet
encrypted

 See Chapter 7

Application Layer 2-17

Application Layer 2-18

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-19

Web and HTTP

First, a review…
 web page consists of objects

 object can be HTML file, JPEG image, Java applet,
audio file,…

 web page consists of base HTML-file which
includes several referenced objects

 each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-20

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

Application Layer 2-21

HTTP overview (continued)

uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-22

HTTP connections

non-persistent HTTP

 at most one object
sent over TCP
connection

 connection then
closed

 downloading multiple
objects required
multiple connections

persistent HTTP

 multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-24

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-25

FTP: the file transfer protocol

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from remote)

 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 2-26

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 control connection: “out of
band”

 FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 2-27

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-28

Electronic mail

Three major components:
 user agents

 mail servers

 simple mail transfer
protocol: SMTP

User Agent
 a.k.a. “mail reader”

 composing, editing, reading
mail messages

 e.g., Outlook, Thunderbird,
iPhone mail client

 outgoing, incoming
messages stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-29

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user

 message queue of outgoing
(to be sent) mail messages

 SMTP protocol between
mail servers to send email
messages

 client: sending mail
server

 “server”: receiving mail
server

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Application Layer 2-30

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
 handshaking (greeting)

 transfer of messages

 closure

 command/response interaction (like HTTP, FTP)
 commands: ASCII text

 response: status code and phrase

 messages must be in 7-bit ASCI

Application Layer 2-31

user

agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Application Layer 2-32

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-33

DNS: domain name system

people: many identifiers:

 SSN, name, passport #

Internet hosts, routers:

 IP address (32 bit) -
used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
 distributed database

implemented in hierarchy of
many name servers

 application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)

 note: core Internet function,
implemented as application-
layer protocol

 complexity at network’s
“edge”

Application Layer 2-34

DNS: services, structure

why not centralize DNS?
 single point of failure

 traffic volume

 distant centralized database

 maintenance

DNS services
 hostname to IP address

translation

 host aliasing

 mail server aliasing

 load distribution

 replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

