Encryption Algorithms & Protocols

More Classical Ciphers

Dr. Omar Abusada E-mail: abossada1@gmail.com

Playfair Cipher

- Not even the large number of keys in a monoalphabetic cipher provides security.
- Multiple letters encryption cipher.
- In playfair cipher unlike traditional cipher we encrypt a pair of alphabets(digraphs) instead of a single alphabet.
- The Playfair Cipher is invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair.

Playfair Encryption Technique

- For the encryption process let us consider the following example:
- Key: monarchy, Plaintext: instruments
- A 5X5 matrix of letters based on a keyword
- The Playfair Cipher Encryption Algorithm consists of 2 steps:
- Fill in letters of keyword (No duplicated letters is allowed)
- Fill rest of matrix with other letters, eg. using the keyword MONARCHY

Μ	0	Ν	Α	R
С	Н	Y	В	D
Ε	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	X	Z

Rules for Encryption Using Playfair

- Diagrams.
- Repeating letters Filler letter
- Same column $|\downarrow|$ warp around.
- Same row $| \rightarrow |$ warp around.
- rectangle | ⇐ | swap.

- Examples:
- □ Plaintext (attack) → digrams: at ta ck
 □ Plaintext (rules) → digrams: ru le sx
 □ Plaintext (balloon) → digrams: ba ll oo n digrams: ba lx lo on

Dr. Omar Abusada

ITNT314

Understanding the rules

- Examples:Plaintext (attack) → digrams: at ta ck
 at: rule number 5 (rectangle) Ciphertext (sr)
 ta: rule number 5 (rectangle) Ciphertext (rs)
 ck: rule number 5 (rectangle) Ciphertext (de)
 Plaintext (attack) ____iphertext (rssrde)
- Examples:Plaintext (mosque) → digrams: mo sq ue
 at: rule number 4 (same raw) Ciphertext (sr)
 ta: rule number 5 (rectangle) Ciphertext (rs)
 ck: rule number 5 (rectangle) Ciphertext (de)

Plaintext (mosque) ciphertext (ontslm)

ITNT314

mo	sq	ue
on	ts	ml

at	ta	ck
rs	sr	de

Μ	0	Ν	Α	R
С	Η	Y	В	D
Ε	F	G	I/J	K
L	Р	Q	S	Τ
U	V	W	X	Ζ

Example

Encrypt the message "hide the gold under the carpet" using playfair technique with keyword "Neso

Academy" Plaintext: hide the gold under the carpet Key: Neso Academy Ciphertext: IKGDQKDPNRCVECOPQKNDOTVDRZ

												tx
IK	GD	QK	DP	NR	CV	EC	OP	QK	ND	OT	VD	RZ

Ν	Ε	S	0	Α
С	D	Μ	Y	В
F	G	Η	I/J	Κ
L	Р	Q	R	Т
U	V	W	X	Ζ

Note: Single VS Multiple (Look at E in plaintext and what is corresponding ciphertext)

H.W

Decrypt the ciphertext "ODZFQSEZSONTSW" using playfair technique. Key "NESO APP"

ITNT314

Vigenère Cipher

- Simplest polyalphabetic substitution cipher.
- Effectively multiple Caesar Ciphers.
- Key is multiple letters long K = k1 k2 ... Km.
- Ith letter specifies the Ith alphabet to use.
- Repeat from start after m letters in message.
- Decryption simply works in reverse.

Rules of Vigenère Cipher

- Write the plaintext out P = p0,p1,....,pn-1
- Write the keyword repeated above it.
- Key = k0,k1,....,km-1 such that m<n
- Encrypt the corresponding plaintext letter
- Ciphertext = (pi + ki mod m) mod 26
- Plaintext= (pi ki mod m) mod 26

ITNT314

Rules of Vigenère Cipher

- Encrypt the message "**wearediscoveredsaveyourself**" with keyword **deceptive**
 - Encryption process: +
 - Decryption process:
 - 0 to 25 = A to Z

Key	d	e	C	e	p	t	i	v	e	d	e	C	e	p	t	i	V	e	d	e	C	e	p	t	i	v	e
plaintext	W	e	а	r	e	d	i	S	C	0	v	e	r	e	d	S	а	v	e	у	0	u	r	S	e	1	f

Key	3	4	2	4	15	19	8	21	4	3	4	2	4	15	19	8	21	4	3	4	2	4	15	19	8	21	4
P.T	22	4	0	17	4	3	8	18	2	14	21	4	17	4	3	18	0	21	4	24	14	20	17	18	4	11	5
C.T	25	8	2	21	19	22	16	13	6	17	25	6	21	19	22	0	21	25	7	2	16	24	6	11	12	6	9

Ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Autokey system in Vigenère Cipher

- For better security, repeating the keyword is not recommended.
- Instead of repeating the keyword, we combine the keyword with the plaintext.
- Based on autokey system, keyword for the previous example (deceptive) can be formed as:
- Key: deceptivewearediscoveredsav
- Plaintext: wearediscoveredsaveyourself
- Then Ciphertext is written as:
- Ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

ITNT314

More videos about classical encryption technique

- https://www.youtube.com/watch?v=JtbKh_12ctg
- <u>https://www.youtube.com/watch?v=na5rapg1XsI</u>
- <u>https://www.youtube.com/watch?v=6iYqHn3q8sY</u>
- <u>https://www.youtube.com/watch?v=JK3ur6W4rvw</u>
- <u>https://www.youtube.com/watch?v=Ic4BzVggNY8</u>

- A classic codebook cipher is, literally, a dictionary-like book containing (plaintext)
- words and their corresponding (ciphertext) codewords. To encrypt a given word, the cipher clerk would simply look up the word in the codebook and replace it with the corresponding codeword.
- Decryption, using the inverse codebook.
- The following table contains an excerpt from a famous codebook used by **Germany** during **World War I**.

Zimmerman Telegram encrypted via Codebook

_	
Plaintext	Ciphertext
Februar	13605
fest	13732
finanzielle	13850
folgender	13918
Frieden	17142
Friedenschluss	17149
•	•
•	•
•	•
•	•

Zimmerman Telegram

ITNT314

- For example, to use the codebook in previous table to encrypt the German word **Februar**, the entire word would be replaced with the 5-digit codeword **13605**. This codebook was used for encryption, while the corresponding inverse codebook, arranged with the 5-digit codewords in numerical order, was used for decryption. A codebook is a form of a substitution cipher, but the substitutions are far from simple, since substitutions are for entire words, or in some cases, entire phrases.
- The codebook illustrated in previous table was used to encrypt the famous Zimmermann telegram. At the height of **World War I in 1917**, the **German Foreign Minister**, **Arthur Zimmermann**, sent an encrypted telegram to the **German ambassador in Mexico City**.

ITNT314

- The ciphertext message, which appears in previous picture, was intercepted by the **British**. At the time, the **British** and **French** were at war with **Germany**, but the **U.S. was neutral**.
- The **Russians** had recovered a damaged version of the **German** codebook, and the partial codebook had been passed on to the **British**. Through A carful analyses, the British were able to fill in the gaps in the codebook so that by the time they obtained the **Zimmermann telegram**, they could decrypt it.
- The telegram stated that the German government was planning to begin unrestricted submarine warfare and had concluded that this would likely lead to war with the United States.

ITNT314

- As a result, **Zimmermann** told his ambassador that **Germany** should try to employ **Mexico** as an partner to fight against the **United States**. The encouragement for **Mexico** was that it would "reconquer the lost territory in **Texas**, **New Mexico** and **Arizona**."
- When the **Zimmermann telegram** was released in the **U.S**., public opinion turned against **Germany** and, after the sinking of the Lusitania, the **U.S. declared war**.

... Thank you ...

