CRYPTOGRAPHIC ALGORITHMS AND PROTOCOLS

PART I: CRYPTOGRAPHY

2.2. More Classical Ciphers

Playfair Cipher

- Not even the large number of keys in a monoalphabetic cipher provides security
- One approach to improving security was to encrypt multiple letters
- **D** The Playfair Cipher is an example
- Invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- □ A 5X5 matrix of letters based on a keyword
- □ Fill in letters of keyword (sans duplicates)
- □ Fill rest of matrix with other letters
- □ eg. using the keyword *MONARCHY*

Μ	0	Ν	Α	R
С	Η	Y	В	D
Ε	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	Х	Z

Encrypting and Decrypting

Plaintext is encrypted two letters at a time:

- 1. If a pair is a repeated letter, insert filler like 'X'
- If both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
- 3. If both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
- Otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Part I: Crypto Almerhag **More Classical Cipher**

Security of Playfair Cipher

- □ Security much improved over monoalphabetic
- □ Since have $26 \times 26 = 676$ digrams
- Would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic) and correspondingly more ciphertext
- Was widely used for many years
 eg. by US & British military in WW1
- It can be broken, given a few hundred letters since still has much of plaintext structure

Vigenère Cipher

- Simplest polyalphabetic substitution cipher
- □ Effectively multiple caesar ciphers
- \Box Key is multiple letters long $K = k_1 k_2 \dots k_m$
- □ Ith letter specifies the Ith alphabet to use
- Use each alphabet in turn
- □ Repeat from start after m letters in message
- Decryption simply works in reverse

Example of Vigenère Cipher

- □ Write the plaintext out $P = p_0, p_1, \dots, p_{n-1}$
- □ Write the keyword repeated above it.
- $\Box K = k_0, k_1, \dots, k_{m-1} \text{ such that } m < n$
- Encrypt the corresponding plaintext letter
- $\Box Ci = (p_i + k_i \mod m) \mod 26$
- □ Ex: using keyword deceptive
 - \circ key: deceptivedeceptivedeceptive
 - plaintext: wearediscoveredsaveyourself
 - o ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Dr. Ibrahim Almerhag

Security of Vigenère Ciphers

- Have multiple ciphertext letters for each plaintext letter
- □ Hence letter frequencies are obscured
- □ But not totally lost
- Start with letter frequencies, See if look monoalphabetic or not
- If not, then need to determine number of alphabets, since then can attack each

Kasiski Method

- Method developed by Babbage / Kasiski
- □ Repetitions in ciphertext give clues to period
- So find same plaintext an exact period apart which results in the same ciphertext
- e.g. repeated "VTW" in previous example suggests size of 3 or 9; of course, could also be random fluke
- Then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- □ Vigenère proposed the autokey cipher.
- Ideally want a key as long as the message with a keyword prefixed to message as key.
- Knowing keyword can recover the first few letters, use these in turn on the rest of the message
- □ But still have frequency characteristics to attack.
- eg. given key deceptive
 key: deceptivewearediscoveredsav
 plaintext: wearediscoveredsaveyourself
 - ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

Codebook Cipher

- □ Literally, a book filled with "codewords"
- Modern block ciphers are codebooks!
- Zimmerman Telegram encrypted via codebook

Februar	13605
fest	13732
finanzielle	13850
folgender	13918
Frieden	17142
Friedenschluss	17149

•

Codebook Cipher: Additive

- □ Codebooks also (usually) use **additive**
- □ Additive book of "random" numbers
 - Encrypt message with codebook
 - $\circ~$ Then choose position in additive book
 - Add additives to get ciphertext
 - Send ciphertext and additive position (MI)
 - Recipient subtracts additives before decrypting
- □ Why use an additive sequence?

Claude Shannon

- □ The founder of Information Theory 1949
- □ Fundamental concepts
 - Confusion—obscure relationship between plaintext and ciphertext
 - Diffusion—spread plaintext statistics through the ciphertext
- □ Proved one-time pad is secure
- One-time pad is confusion-only, while double transposition is diffusion-only

Taxonomy of Cryptography

□ Symmetric Key

- $\circ~$ Same key for encryption and decryption
- Two types: Stream ciphers, Block ciphers
- □ **Public Key** (or asymmetric crypto)
 - Two keys, one for encryption (public), and one for decryption (private)
 - And digital signatures nothing comparable in symmetric key crypto
- Hash algorithms
 - Can be viewed as "one way" crypto

Taxonomy of Cryptanalysis

From perspective of info available to Trudy

- □ Ciphertext only
- Known plaintext
- Chosen plaintext
- Protocols might encrypt chosen data
- □ Related key
- □ Forward search (public key crypto)
- □ And others...

