
FACULTY OF INFORMATION TECHNOLOGY

Distributed Systems

Communications

1

Communication: Foundations Layered Protocols

Middleware layer

Observation
Middleware is invented to provide common services and protocols that can be
used by many different applications

A rich set of communication protocols
(Un)marshaling of data, necessary for integrated systems
Naming protocols, to allow easy sharing of resources
Security protocols for secure communication
Scaling mechanisms, such as for replication and caching

Note
What remains are truly application-specific protocols... such as?

Middleware protocols 5 / 49

2

Communication: Foundations Layered Protocols

An adapted layering scheme

Hardware

Middleware

Application
Application protocol

Middleware protocol

Host-to-host protocol

Network

Operating
system

Physical/Link-level protocol

Middleware protocols 6 / 49

3

Communication: Foundations Types of Communication

Types of communication

Distinguish...

Client

Server

�

Synchronize after�
processing by server

Synchronize at �
request delivery

Synchronize at�
request submission

Request

Reply

Storage�
facility

Transmission�
interrupt

Time

Transient versus persistent communication
Asynchronous versus synchronous communication

7 / 49

4

Communication: Foundations Types of Communication

Types of communication

Transient versus persistent

Client

Server

�

Synchronize after�
processing by server

Synchronize at �
request delivery

Synchronize at�
request submission

Request

Reply

Storage�
facility

Transmission�
interrupt

Time

Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.

8 / 49

5

Communication: Foundations Types of Communication

Types of communication

Places for synchronization

Client

Server

�

Synchronize after�
processing by server

Synchronize at �
request delivery

Synchronize at�
request submission

Request

Reply

Storage�
facility

Transmission�
interrupt

Time

At request submission
At request delivery
After request processing

9 / 49

6

Communication: Foundations Types of Communication

Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

Client and server have to be active at time of communication
Client issues request and blocks until it receives reply
Server essentially waits only for incoming requests, and subsequently
processes them

Drawbacks synchronous communication
Client cannot do any other work while waiting for reply
Failures have to be handled immediately: the client is waiting
The model may simply not be appropriate (mail, news)

10 / 49

7

Communication: Foundations Types of Communication

Messaging

Message-oriented middleware
Aims at high-level persistent asynchronous communication:

Processes send each other messages, which are queued
Sender need not wait for immediate reply, but can do other things
Middleware often ensures fault tolerance

11 / 49

8

Communication: Remote procedure call Basic RPC operation

Basic RPC operation

Observations
Application developers are familiar with simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on separate
machine

Conclusion
Communication between caller & callee
can be hidden by using procedure-call
mechanism.

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result

12 / 49

9

Communication: Remote procedure call Basic RPC operation

Implementation
of doit

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process

1. Client call to
procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to “doit”

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
r = a,bdoit() r = a,bdoit()

proc: “doit”
type1: val(a)

type2: val(b)

proc: “doit”
type1: val(a)

type2: val(b)

proc: “doit”
type1: val(a)

type2: val(b)

1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters; calls

server.

6 Server does local call; returns result to stub.
7 Stub builds message; calls OS.
8 OS sends message to client’s OS.
9 Client’s OS gives message to stub.
10 Client stub unpacks result; returns to client.

13 / 49
10

Basic RPC operation

Communication: Remote procedure call Parameter passing

RPC: Parameter passing

There’s more than just wrapping parameters into a message
Client and server machines may have different data representations (think
of byte ordering)
Wrapping a parameter means transforming a value into a sequence of
bytes
Client and server have to agree on the same encoding:

How are basic data values represented (integers, floats, characters)
How are complex data values represented (arrays, unions)

Conclusion
Client and server need to properly interpret messages, transforming them into
machine-dependent representations.

14 / 49

11

Communication: Remote procedure call Parameter passing

RPC: Parameter passing

Some assumptions
Copy in/copy out semantics: while procedure is executed, nothing can be
assumed about parameter values.
All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

A remote reference mechanism enhances access transparency
Remote reference offers unified access to remote data
Remote references can be passed as parameter in RPCs
Note: stubs can sometimes be used as such references

15 / 49

12

Communication: Remote procedure call Variations on RPC

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client continue
without waiting for an answer from the server.

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server Time

Wait for
acceptance

Callback to client

Return
results

Asynchronous RPC 16 / 49

13

Communication: Remote procedure call Variations on RPC

Sending out multiple RPCs

Essence
Sending an RPC request to a group of servers.

Call local procedure

Call local procedure

Call remote
procedures

Client

Server

Server

Time

Callbacks to client

Multicast RPC 17 / 49

14

Communication: Remote procedure call Example: DCE RPC

RPC in practice

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

Writing a Client and a Server 18 / 49

15

Communication: Remote procedure call Example: DCE RPC

Client-to-server binding (DCE)

Issues
(1) Client must locate server machine, and (2) locate the server.

Port
table

Server

DCE
daemon

Client
1. Register port

2. Register service
3. Look up server

4. Ask for port

5. Do RPC

Directory
server

Server machine
Client machine

Directory machine

Binding a client to a server 19 / 49

16

Communication: Message-oriented communication Simple transient messaging with sockets

Transient messaging: sockets

Berkeley socket interface
Operation Description

socket Create a new communication end point
bind Attach a local address to a socket
listen Tell operating system what the maximum number of pending

connection requests should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection

connect

socket

socket

bind listen receive

receive

send

send

accept close

close

Server

Client

Synchronization point Communication

20 / 49

17

Communication: Message-oriented communication Simple transient messaging with sockets

Sockets: Python code

Server

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 s.bind((HOST, PORT))
4 s.listen(1)
5 (conn, addr) = s.accept() # returns new socket and addr. client
6 while True: # forever
7 data = conn.recv(1024) # receive data from client
8 if not data: break # stop if client stopped
9 conn.send(str(data)+"*") # return sent data plus an "*"

10 conn.close() # close the connection

Client

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 s.connect((HOST, PORT)) # connect to server (block until accepted)
4 s.send(’Hello, world’) # send same data
5 data = s.recv(1024) # receive the response
6 print data # print the result
7 s.close() # close the connection

21 / 49

18

Communication: Message-oriented communication Advanced transient messaging

Making sockets easier to work with

Observation
Sockets are rather low level and programming mistakes are easily made.
However, the way that they are used is often the same (such as in a
client-server setting).

Alternative: ZeroMQ
Provides a higher level of expression by pairing sockets: one for sending
messages at process P and a corresponding one at process Q for receiving
messages. All communication is asynchronous.

Three patterns
Request-reply
Publish-subscribe
Pipeline

Using messaging patterns: ZeroMQ 22 / 49

19

Communication: Message-oriented communication Advanced transient messaging

Request-reply

Server

1 import zmq
2 context = zmq.Context()
3

4 p1 = "tcp://"+ HOST +":"+ PORT1 # how and where to connect
5 p2 = "tcp://"+ HOST +":"+ PORT2 # how and where to connect
6 s = context.socket(zmq.REP) # create reply socket
7

8 s.bind(p1) # bind socket to address
9 s.bind(p2) # bind socket to address

10 while True:
11 message = s.recv() # wait for incoming message
12 if not "STOP" in message: # if not to stop...
13 s.send(message + "*") # append "*" to message
14 else: # else...
15 break # break out of loop and end

Using messaging patterns: ZeroMQ 23 / 49

20

Communication: Message-oriented communication Advanced transient messaging

Request-reply

Client

1 import zmq
2 context = zmq.Context()
3

4 php = "tcp://"+ HOST +":"+ PORT # how and where to connect
5 s = context.socket(zmq.REQ) # create socket
6

7 s.connect(php) # block until connected
8 s.send("Hello World") # send message
9 message = s.recv() # block until response

10 s.send("STOP") # tell server to stop
11 print message # print result

Using messaging patterns: ZeroMQ 24 / 49

21

Communication: Message-oriented communication Advanced transient messaging

Publish-subscribe
Server

1 import zmq, time
2

3 context = zmq.Context()
4 s = context.socket(zmq.PUB) # create a publisher socket
5 p = "tcp://"+ HOST +":"+ PORT # how and where to communicate
6 s.bind(p) # bind socket to the address
7 while True:
8 time.sleep(5) # wait every 5 seconds
9 s.send("TIME " + time.asctime()) # publish the current time

Client

1 import zmq
2

3 context = zmq.Context()
4 s = context.socket(zmq.SUB) # create a subscriber socket
5 p = "tcp://"+ HOST +":"+ PORT # how and where to communicate
6 s.connect(p) # connect to the server
7 s.setsockopt(zmq.SUBSCRIBE, "TIME") # subscribe to TIME messages
8

9 for i in range(5): # Five iterations
10 time = s.recv() # receive a message
11 print time

Using messaging patterns: ZeroMQ 25 / 49 22

Communication: Message-oriented communication Advanced transient messaging

Pipeline

Source

1 import zmq, time, pickle, sys, random
2

3 context = zmq.Context()
4 me = str(sys.argv[1])
5 s = context.socket(zmq.PUSH) # create a push socket
6 src = SRC1 if me == ’1’ else SRC2 # check task source host
7 prt = PORT1 if me == ’1’ else PORT2 # check task source port
8 p = "tcp://"+ src +":"+ prt # how and where to connect
9 s.bind(p) # bind socket to address

10

11 for i in range(100): # generate 100 workloads
12 workload = random.randint(1, 100) # compute workload
13 s.send(pickle.dumps((me,workload))) # send workload to worker

Using messaging patterns: ZeroMQ 26 / 49

23

Communication: Message-oriented communication Advanced transient messaging

Pipeline

Worker

1 import zmq, time, pickle, sys
2

3 context = zmq.Context()
4 me = str(sys.argv[1])
5 r = context.socket(zmq.PULL) # create a pull socket
6 p1 = "tcp://"+ SRC1 +":"+ PORT1 # address first task source
7 p2 = "tcp://"+ SRC2 +":"+ PORT2 # address second task source
8 r.connect(p1) # connect to task source 1
9 r.connect(p2) # connect to task source 2

10

11 while True:
12 work = pickle.loads(r.recv()) # receive work from a source
13 time.sleep(work[1]*0.01) # pretend to work

Using messaging patterns: ZeroMQ 27 / 49

24

Communication: Message-oriented communication Advanced transient messaging

MPI: When lots of flexibility is needed

Representative operations

Operation Description

MPI bsend Append outgoing message to a local send buffer
MPI send Send a message and wait until copied to local or

remote buffer
MPI ssend Send a message and wait until transmission starts
MPI sendrecv Send a message and wait for reply
MPI isend Pass reference to outgoing message, and continue
MPI issend Pass reference to outgoing message, and wait until

receipt starts
MPI recv Receive a message; block if there is none
MPI irecv Check if there is an incoming message, but do not

block

The Message-Passing Interface (MPI) 28 / 49

25

Communication: Message-oriented communication Message-oriented persistent communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of middleware-level
queues. Queues correspond to buffers at communication servers.

Operations

Operation Description

put Append a message to a specified queue
get Block until the specified queue is nonempty, and

remove the first message
poll Check a specified queue for messages, and remove

the first. Never block
notify Install a handler to be called when a message is put

into the specified queue

Message-queuing model 29 / 49

26

Communication: Message-oriented communication Message-oriented persistent communication

General model

Queue managers
Queues are managed by queue managers. An application can put messages
only into a local queue. Getting a message is possible by extracting it from a
local queue only) queue managers need to route messages.

Routing

Local OS

Source queue
manager

Logical
queue-level

address (name)

Contact
address

Destination queue
manager

Address lookup
database

Look up
contact address
of destination
queue manager

Local OS

Network

General architecture of a message-queuing system 30 / 49

27

Communication: Message-oriented communication Message-oriented persistent communication

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system
Transforms incoming messages to target format
Very often acts as an application gateway
May provide subject-based routing capabilities (i.e., publish-subscribe
capabilities)

Message brokers 31 / 49

28

Communication: Message-oriented communication Message-oriented persistent communication

Message broker: general architecture

Local OS

Application

Interface

Local OS Local OS

Application

Interface

Broker plugins Rules

Queuing
layer

Source DestinationMessage broker

Message brokers 32 / 49

29

Communication: Message-oriented communication Example: IBM’s WebSphere message-queuing system

IBM’s WebSphere MQ

Basic concepts
Application-specific messages are put into, and removed from queues
Queues reside under the regime of a queue manager
Processes can put messages only in local queues, or through an RPC
mechanism

Message transfer
Messages are transferred between queues
Message transfer between queues at different processes, requires a
channel
At each end point of channel is a message channel agent
Message channel agents are responsible for:

Setting up channels using lower-level network communication
facilities (e.g., TCP/IP)
(Un)wrapping messages from/in transport-level packets
Sending/receiving packets

Overview 33 / 49

30

Communication: Message-oriented communication Example: IBM’s WebSphere message-queuing system

IBM’s WebSphere MQ
Schematic overview

MCA MCA

MQ Interface

Stub

Queue
manager

Server
stub

Send queueRouting table

Enterprise network
RPC
(synchronous)

Local network

Message passing
(asynchronous)

To other remote
queue managers

Client's receive
queueSending client Receiving client

MCA MCA

MQ Interface

Stub

Queue
manager

Server
stub

Channels are inherently unidirectional
Automatically start MCAs when messages arrive
Any network of queue managers can be created
Routes are set up manually (system administration)

Overview 34 / 49

31

Communication: Message-oriented communication Example: IBM’s WebSphere message-queuing system

Message channel agents

Some attributes associated with message channel agents

Attribute Description

Transport type Determines the transport protocol to be used
FIFO delivery Indicates that messages are to be delivered in the

order they are sent
Message length Maximum length of a single message
Setup retry count Specifies maximum number of retries to start up the

remote MCA
Delivery retries Maximum times MCA will try to put received message

into queue

Channels 35 / 49

32

Communication: Message-oriented communication Example: IBM’s WebSphere message-queuing system

IBM’s WebSphere MQ

Routing
By using logical names, in combination with name resolution to local queues, it
is possible to put a message in a remote queue

SQ1

SQ1

SQ1

SQ1
SQ2

SQ1

SQ1

SQ1
SQ1

SQ2

SQ1

SQ1

QMA

QMB

QMA

QMA
QMC

QMC

QMC

QMC
QMB

QMD

QMD

QMD

Routing table

Routing table

Routing table

Routing table

LA1

LA1

LA1

LA2

LA2

LA2

QMA

QMC

QMA

QMC

QMD

QMD

Alias table

Alias table

Alias table

QMD

QMA

QMB

QMBSQ1

SQ1

SQ1

SQ1

SQ2

SQ2

Message transfer 36 / 49 33

