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Architectures: Architectural styles

Architectural styles

Basic idea
A style is formulated in terms of

@ (replaceable) components with well-defined interfaces

@ the way that components are connected to each other

@ the data exchanged between components

@ how these components and connectors are jointly configured into a
system.

Connector

A mechanism that mediates communication, coordination, or cooperation
among components. Example: facilities for (remote) procedure call,
messaging, or streaming.
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A style 1s formulated 1n terms of

(replaceable) components with well-defined interfaces the way that components are connected
to each other the data exchanged between components how these components and connectors
are jointly configured into a system.
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A mechanism that mediates communication, coordination, or cooperation among components.



Example: facilities for (remote) procedure call, messaging, or streaming.
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Using components and connectors, we can come to various configurations,
which, in turn, have been classified into architectural styles. Several styles
have by now been identified, of which the most important ones for distributed
systems are:

e [ayered architectures

e Object-based architectures

e Resource-centered architectures
e Event-based architectures



Clements, 1997].
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For example, a connector can be formed by the facilities for (remote) procedure calls, message
passing, or streaming data.
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In other words, a connector allows for the flow of control and data between components.
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Using components and connectors, we can come to various configurations, which, 1n turn,
have been elassiﬁed into arehiteetural styles

Several styles have by now been 1dent1ﬁed, of which the most important ones for dlstrlbuted
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systems are:
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» Layered architectures
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» Object-based architectures
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* Resource-centered architectures
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* Event-based architectures In the following, we discuss each of these styles separately.
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We note 1n

advance that in most real-world distributed systems, many different styles are
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combined.
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Notably following an approach by which a system 1s subdivided 3
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Architectures: Architectural styles Layered architectures

Layered architecture

Ditferent layered organizations
Request/Response
downcall One-way call
K >
Layer N Layer N Layer N
Layer N-1 Layer N-1 Layer N-1
i i Handlei TUpcaII
4 Layer N-2 Layer N-2
Layer 2 4 i l
i Layer N-3
Layer 1 i
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Layered architecture

Different layered organizations
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Layer 1
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Figure 2.1(a) shows a standard organization in which only downcalls to
the next lower layer are made. This organization is commonly deployed in
the case of network communication.

In many situations we also encounter the organization shown in Fig-
ure 2.1(b). Consider, for example, an application A that makes use of a library
Los to interface to an operating system. At the same time, the application uses
a specialized mathematical library L, that has been implemented by also
making use of Lgg. In this case, referring to Figure 2.1(b), A is implemented at
layer N — 1, Ljjyath at layer N — 2, and Log which is common to both of them,
at layer N — 3.

Finally, a special situation is shown in Figure 2.1(c). In some cases, it
is convenient to have a lower layer do an upcall to its next higher layer. A
typical example is when an operating system signals the occurrence of an
event, to which end it calls a user-detined operation for which an application
had previously passed a reference (typically referred to as a handle).



Figure 2.1(a) shows a standard organization in which only downcalls to
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the next lower layer are made.

This organization 1s commonly deployed in the case of network communication.
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In many situations we also encounter the organization shown in Fig-
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ure 2.1(b).
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Consider, for example, an application A that makes use of a library

LOS to interface to an operating system.
Gl il 46a) I LOS



At the same time, the application uses a specialized mathematical library Lmath that has been
implemented by also making use of LOS.
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In this case, referring to Figure 2.1(b), A 1s implemented at
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layer N — 1, Lmath at layer N — 2, and LOS which 1s common to both of them, at layer N — 3.
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Finally, a special situation 1s shown in Figure 2.1(c¢).
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In some cases, it
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1s convenient to have a lower layer do an upcall to 1ts next higher layer.
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A typical example 1s when an operating system signals the occurrence of an event, to which
end 1t calls a user-defined operation for which an application
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had previously passed a reference (typically referred to as a handle). /
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Architectures: Architectural styles Layered architectures

Example: communication protocols

Protocol, service, interface

Party A Party B
[ Layer N - > Layer N ]
| | ]
Interface Service
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T Protocol =
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Layered architectures

Example: communication protocols

Protocol, service, interface

Party A

Interface



Service

Layer N-1

Protocol
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In communication-protocol stacks, each layer implements one or several
communication services allowing data to be sent from a destination to one
or several targets. To this end, each layer offers an interface specifying the
functions that can be called. In principle, the interface should completely
hide the actual implementation of a service. Another important concept
in the case of communication is that of a (communication) protocol, which
describes the rules that parties will follow in order to exchange information.
[t is important to understand the difference between a service otfered by a
layer, the interface by which that service is made available, and the protocol
that a layer implements to establish communication. This distinction is shown

in Figure 2.2.



called communication-protocol stacks.
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We will concentrate here on the global picture only and defer a detailed discussion to Section
4.1.

4.1 ausll dpluadil) 45806 Ja g g Jasd 4pallall 3 sall e B S ji

In communication-protocol stacks, each layer implements one or several communication
services allowing data to be sent from a destination to one or several targets.
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To this end, each layer offers an interface specifying the functions that can be called.
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In principle, the interface should completely hide the actual implementation of a service.
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Another important concept in the case of communication 1s that of a (communication)
protocol, which describes the rules that parties will follow 1n order to exchange information.
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It 1s important to understand the difference between a service offered by a layer, the interface
by which that service 1s made available, and the protocol that a layer implements to establish
communication.
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This distinction 1s shown 1n Figure 2.2.
2.2 JSAl 8 Suall 1 el
To make this distinction clear, consider a reliable, connection-oriented
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service, which 1s provided by many communication systems.
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In this case, a communicating party first needs to set up a connection to another party 7 before
the two can send and receive messages Being reliable means that
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Architectures: Architectural styles Layered architectures

Two-party communication

Server
1 from socket 1mport x
2 s = socket (AF _INET, SOCK STREAM)
3 (conn, addr) = s.accept() # returns new socket and addr. client
4 while True: # forever
5 data = conn.recv(1024) # receive data from client
6 if not data: break # stop 1f client stopped
7 conn.send(str(data) +"«") # return sent data plus an "#"
8§ conn.close() # close the connection
y
Client

1 from socket i1mport x

2 S = socket (AF _INET, SOCK_ STREAM)

3 s.connect ( (HOST, PORT)) # connect to server (block until accepted)
4 s.send(’Hello, world') # send some data

5 data = s.recv(1024) # receive the response

6 print data # print the result

7 s.close() # close the connection
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Layered architectures
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Two-party communication
Okl G Jaal
Server
adadl

1 from socket import *
2 s = socket(AF INET, SOCK STREAM)
(AF INET« SOCK STREAM) susall = 446G 2
3 (conn, addr) = s.accept()
()s.accept = (L «sS) 3

# returns new socket and addr.



client

4 while True:

# forever

data = conn.recv(1024)

# receive data from client
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1f not data: break
dal giud sl oS5 A1

# stop 1f client stopped
Jianl) i 513 i 5

7 conn.send(str(data)+"*") # return sent data plus an "*"
"N S Al Adu el Ul ¢ Wl # conn.send(str(data)+"*") 7

8 conn.close() # close the connection
Juaiyl slel # ()conn.Close 8

Client
Jiac

3 s.connect((HOST, PORT)) # connect to server (block until accepted)
(Mo o Ja e adll JuaW) # s .connect((HOST, PORT)) 3

4 s.send(’Hello, world’)
('allell L a)s.send 4

# send some data



5 data = s.recv(1024)

# recerve the response

6 print data

# print the result

7 s.close()

@xFxBot ddaud g3 Cuan JS | (8) dadia


https://t.me/xfxbot
https://t.me/xfxbot

# close the connection
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In this example, a server is created that makes use of a connection-oriented
service as offered by the socket library available in Python. This service allows
two communicating parties to reliably send and receive data over a connection.
The main functions available in its interface are:

socket(): to create an object representing the connection

accept(): a blocking call to wait for incoming connection requests; if
successful, the call returns a new socket for a separate connection
connect(): to set up a connection to a specified party

close(): to tear down a connection

send(), recv(): to send and receive data over a connection, respectively



(b) A client

Figure 2.3: Two communicating parties.
Ohaia 8,k 12 3 JSA

In this example, a server 1s created that makes use of a connection-oriented service as offered
by the socket library available in Python.
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This service allows two communicating parties to reliably send and receive data over a
connection.
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The main functions available 1n 1ts interface are:
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* socket(): to create an object representing the connection
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* accept(): a blocking call to wait for incoming connection requests; 1f successful, the call
returns a new socket for a separate connection
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 connect(): to set up a connection to a specified party
a8yl Jual) dacy () JuaiY) e

* close(): to tear down a connection

* send(), recv(): to send and receive data over a connection, respectively
sl e cJlay) e bl Jhdiad 5 WY :()send(), recy e
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The combination of constants AF_INET and SOCK_STREAM is used to specity that
the TCP protocol should be used in the communication between the two parties.
These two constants can be seen as part ot the intertface, whereas making use of
TCP is part of the offered service. How TCP is implemented, or for that matter any
part of the communication service is hidden completely from the applications.
Finally, also note that these two programs implicitly adhere to an application-
level protocol: apparently, if the client sends some data, the server will return it.

Indeed, it operates as an echo server where the server adds an asterisk to the data
sent by the client.

10



The combination of constants AF INET and SOCK STREAM i1s used to specify that the TCP

protocol should be used 1in the communication between the two parties.
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These two constants can be seen as part of the interface, whereas making use of TCP 1s part of
the offered service.
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How TCP 1s implemented, or for that matter any part of the communication service 1s hidden

completely from the applications.
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Finally, also note that these two programs implicitly adhere to an application-level protocol:
apparently, 1f the client sends some data, the server will return it.
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Indeed, 1t operates as an echo server where the server adds an asterisk to the data sent by the
client.
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Application layering
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Let us now turn our attention to the logical layering of applications.
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Consider-
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ing that a large class of distributed applications 1s targeted toward supporting
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Architectures: Architectural styles Layered architectures

Application Layering

Traditional three-layered view

@ Application-interface layer contains units for interfacing to users or
external applications

@ Processing layer contains the functions of an application, i.e., without
specific data

@ Data layer contains the data that a client wants to manipulate through the
application components

This layering is found in many distributed information systems, using traditional
database technology and accompanying applications.

11
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Layered architectures
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Application Layering
Gkl ik
Traditional three-layered view

Application-interface layer contains units for interfacing to users or external applications
Processing layer contains the functions of an application, 1.e., without specific data Data layer
contains the data that a client wants to manipulate through the application components
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Observation
G



This layering 1s found 1n many distributed information systems, using traditional database

technology and accompanying applications.
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As a first example, consider an Internet search engine. Ignoring all the ani-
mated banners, images, and other fancy window dressing, the user interface
of a search engine can be very simple: a user types in a string of keywords
and is subsequently presented with a list of titles of Web pages. The back
end is formed by a huge database of Web pages that have been pretfetched
and indexed. The core of the search engine is a program that transtorms the
user’s string of keywords into one or more database queries. It subsequently
ranks the results into a list, and transtorms that list into a series of HITML
pages. This information retrieval part is typically placed at the processing
level. Figure 2.4 shows this organization.

12



to the processing level.
Anlladl (5 sise

Theretfore, we shall give a number of examples to make this level clearer. /
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As a first example, consider an Internet search engine.

Ignoring all the ani-mated banners, images, and other fancy window dressing, the user
interface of a search engine can be very simple: a user types 1n a string of keywords and 1s
subsequently presented with a list of titles of Web pages.
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The back end 1s formed by a huge database of Web pages that have been prefetched and
indexed.
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The core of the search engine 1s a program that transforms the user’s string of keywords into

one or more database queries.
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It subsequently ranks the results into a list, and transforms that list into a series of HTML

pages.
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This information retrieval part 1s typically placed at the processing level.
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Figure 2.4 shows this organization.
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As a second example, consider a decision support system for stock bro-kerage.
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Analogous to a search engine, such a system can be divided into the
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following three layers:
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Application Layering

Example: a simple search engine

| User-interface
User interface level

\ HTML page \
Keyword expression containing list
HTML
generator > Processing
Query A Ranked list level
generator of page titles
Ranking
Database queries algorithm ]
Web page titles
with meta-information
Database Data level

with Web pages

13
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Layered architectures
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Application Layering
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Example: a simple search engine
by Syl a1 Jls

User interftace

User-interface level
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Keyword expression

HTML page containing list



Ranked list

Processing

generator
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level

of page titles

Database queries

Ranking algorithm

Web page titles

Database

with meta-information

Data level



with Web pages
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Architectures: Architectural styles Object-based and service-oriented architectures

Object-based style

Essence

Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a

network. )

State

-
Object ]4 KObjec:t ) / \\ \

V% Method

N\

[Object ] Method call

Object ) K{ }J

Interface

Object

Encapsulation

Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

14
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Object-based and service-oriented architectures
Object-based style
) e ) Ll
Essence
SRR
Components are objects, connected to each other through procedure calls.
el jaY) dleledind PR (e el Lz n dliate A0S o L Sl
Objects may be placed on different machines; calls can thus execute across a network.
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State Object Object
Al S il
Object



Method call

Method

Interface

Encapsulation
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Objects are said to encapsulate data and offer methods on that data without revealing the

internal implementation.
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Resource Based Architecture
Representational State Transfer (REST)



Resource Based Architecture
3 ) sall e Al 5 jlanl

Representational State Transter (REST)
(REST) 4l allal) Jss
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RESTful architectures

Essence

View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by
(remote) applications.

@ Resources are identified through a single naming scheme

© All services offer the same interface

© Messages sent to or from a service are fully self-described

© After executing an operation at a service, that component forgets
everything about the caller

Basic operations

Operation | Description

PUT Create a new resource
GET Retrieve the state of a resource in some representation
DELETE Delete a resource

POST Modify a resource by transferring a new state

16
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Resource-based architectures

3 ) sall e daital)
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Essence
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View a distributed system as a collection of resources, individually managed by components.
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Resources may be added, removed, retrieved, and modified by (remote) applications.
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Resources are 1identified through a single naming scheme
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All services offer the same interface



Messages sent to or from a service are fully self-described
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After executing an operation at a service, that component forgets
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everything about the caller
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Basic operations
Operation
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Description

PUT

Create a new resource

GET

Retrieve the state of a resource 1n some representation

Delete a resource




Modify a resource by transferring a new state
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Architectures: Architectural styles Resource-based architectures

Example: Amazon’s Simple Storage Service

Essence

Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be
placed into buckets. Operations on ObjectName In bucket BucketName require

the following identifier:

http://BucketName.s3.amazonaws .com/ObjectName

All operations are carried out by sending HT TP requests:

@ Create a bucket/object: puT, along with the URI
@ Listing objects: GET on a bucket name
@ Reading an object: GET on a full URI

17
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Resource-based architectures
3 ) sl e aalal
Example: Amazon’s Simple Storage Service
bl e Aagnll G 3a00 daad ; Jlia
Essence
P
Objects (1.€., files) are placed into buckets (i.e., directories).
(VA 1) Cle gana L (i) (5l) ClilS) a5
Buckets cannot be placed into buckets.

Operations on ObjectName 1n bucket BucketName require the following identifier:
) <o y2all BucketName 4sisll 8 ObjectName (e Sllaall s

Typical operations



All operations are carried out by sending HTTP requests:
HTTP <llh Jla ) &b e Gllaall anaa 48 20

Create a bucket/object: PUT, along with the URI Listing objects: GET on a bucket name
Reading an object: GET on a full URI

JS URI =
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Architectures: Architectural styles Publish-subscribe architectures

Coordination
Temporal and referential coupling
Temporally | Temporally
coupled decoupled
Referentially Direct Mailbox
coupled
Referentially Event- Shared
decoupled based data space
4

Event-based and Shared data space

Component Component Component Component
1 A A Notification A
Subscribe , | delivery Publish Subscribe ! Data
\ 4 \ 4 v v delivery
< Event bus > < - i >

T Publish , A
Component E! j

Shared (persistent) data space
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Publish-subscribe architectures

Coordination
.4 A 754

Temporal and referential coupling
DRI () O

Temporally coupled
Temporally decoupled
Referentially coupled

Direct



Referentially decoupled

Shared data space
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Event-based and Shared data space

Component

Subscribe

Notification

Data

delivery

Event bus



Shared (persistent) data space
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« Shared data spaces are often combined with event-based coordination: a
process subscribes to certain tuples by providing a search pattern; when a
process inserts a tuple into the data space, matching subscribers are notified.
In both cases, we are dealing with a publish-subscribe architecture, and
indeed, the Kkey characteristic feature is that processes have no explicit
reference to each other. The difference between a pure event-based
architectural style , and that of a shared data space, is shown in the figure. An
abstraction of the mechanism by which publishers and subscribers are
matched, known as an event bus have also been shown.
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» Shared data spaces are often combined with event-based coordination: a process subscribes
to certain tuples by providing a search pattern; when a process inserts a tuple into the data
space, matching subscribers are notified.
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In both cases, we are dealing with a publish-subscribe architecture, and indeed, the key
characteristic feature 1s that processes have no explicit reference to each other.

led G lileal) () o ot 515 ) Aacd) cadl gl g el BEY) 5 il i ae Jalais g pillal) LIS s
M‘MM‘J"J\"‘“

The difference between a pure event-based architectural style , and that of a shared data space,
1s shown 1n the figure.
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An abstraction of the mechanism by which publishers and subscribers are matched, known as
an event bus have also been shown.
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Architectures: Middleware organization Interceptors

Developing adaptable middleware

Problem

Middleware contains solutions that are good for most applications = you may
want to adapt its behavior for specific applications.

20
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Developing adaptable middleware
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Problem
s

want to adapt its behavior for specific applications.

Middleware contains solutions that are good for most applications ) you may
(il plaed Fulin I Lo s ) el 5 i
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* AN Interceptor

* Conceptually, an interceptor is nothing but a software construct that will break the usual
flow of control and allow other (application specific) code to be executed. Interceptors are
a primary means for adapting middleware to the specific needs of an application.

a remote-object invocation is carried out in three steps:

1. Object A is offered a local interface that is the same as the interface offered by object B. A
calls the method available in that interface.

2. The call by A Is transformed into a generic object invocation, made possible through a
general object-invocation interface offered by the middleware at the machine where A
resides.

3. Finally, the generic object invocation is transformed into a message that is sent through the
transport-level network interface as offered by A’s local operating system.
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* AN 1nterceptor
Al yic| e

* Conceptually, an interceptor 1s nothing but a software construct that will break the usual flow
of control and allow other (application specific) code to be executed.

Cilaalat 280 peanay g 28l 2linall 3820 iy (o AilE (e (e ol (5 g i Simall (8 g plaill Zoaldl) e e
(Gnkilh Aaln) (5 Al dana

Interceptors are a primary means for adapting middleware to the specific needs of an

application.
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a remote-object invocation 1s carried out 1n three steps:
+C) glad G 8 ) IS e le i) Aaet AL

Object A 1s offered a local interface that 1s the same as the interface offered by object B.
B A Leasy Al dgal ol Al A AU dplaa dgal 5 anadi &3

A calls the method available 1n that interface.



The call by A 1s transformed 1nto a generic object invocation, made possible through a general
obj ect mvocatlon mterface offered by the mlddleware at the machme Where A remdes

A 42 5 s Seadl e Ayl @-AUJ‘ i 5

Finally, the generic object invocation 1s transformed into a message that 1s sent through the
transport-level network interface as offered by A’s local operating system.

allai Lganty LeS Jail) (5 gine Ao 4803l dgal g e Ledlu ) & Alla )y ) alad) (S elesiad o sad 2l o sl
A = =l sl Jail
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Architectures: Middleware organization

Intercept the usual flow of control

Intercepted call

\
(

Request-level interceptor

N\

Client application

B.doit(val) —

Application stub

/

(

Message-level interceptor

\

— Nonintercepted call

A4

— invoke (B, &doit, wval) -

Object middleware

/

|
J
|
J

Y

B send (B, “doit”, wval) -

Local OS

Y To object B

Interceptors
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Architectures: Middleware organization

Interceptors
daal yicl

Intercept the usual flow of control
5yl Aliaall 38230 el gic

Intercepted call
AlSal) al yie) o
Client application
B.doit(val)
(JY) 5o

Request-level interceptor

Application stub



Nonintercepted call

invoke(B, &doit, val)

Object middleware

Message-level interceptor

send(B, “doit”, val)
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L.ocal OS

To object B
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* This scheme is shown in the Figure. After the first step, the call B.doit(val)
Is transformed into a generic call, such as invoke(B,&doit,val) with a
reference to B’s method and the parameters that go along with the call.
Now imagine that object B is replicated. In that case, each replica should
actually be invoked. This is a clear point where interception can help. What
the request-level interceptor will do, is simply call invoke(B,&doit,val) for
each of the replicas. The beauty of this all is that the object A need not be
aware of the replication of B, but also the object middleware need not
have special components that deal with this replicated call. Only the
request-level interceptor, which may be added to the middleware, needs to

know about B’s replication. In the end, a call to a remote object will have to
be sent over the network.
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* This scheme 1s shown 1n the Figure.

JSG 8 daladdll 1aa pelaye

After the first step, the call B.doit(val) 1s transtformed 1nto a generic call, such as
invoke(B,&doit,val) with a reference to B’s method and the parameters that go along with the
call.

& 3L aw invoc(B,&doit,val) Ji ¢ale clexiud N B.doit(val) slexiwa¥) Ji g2 S (el oY) 5 ghadl) axy
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Now 1magine that object B 1s replicated.
Ad 5 a8 Bl o Jaas oY)
In that case, each replica should actually be invoked.

Al 4 IS cledind Jaally (a ¢adlaldl 524 ‘_,,A

This 1s a clear point where interception can help.
o e Ld ac by o)) (S danzal g 4dadi s 2a

What the request-level interceptor will do, 1s simply call invoke(B,&doit,val) for each of the
replicas.
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The beauty of this all 1s that the object A need not be aware of the replication of B, but also the
object middleware need not have speeial components that deal With this replicated eall

Only the request-level interceptor, which may be added to the middleware, needs to know
about B’s replication.
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B

In the end, a call to a remote object will have to be sent over the network.
AL e e IS ) Al dle ) g il (A
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Architectures: System architecture Centralized organizations

Centralized system architectures

Basic Client—Server Model

Characteristics:
@ There are processes offering services (servers)
@ There are processes that use services (clients)

@ Clients and servers can be on different machines
@ Clients follow request/reply model with respect to using services

Client Server

| Request

Wait i Provide service
| Reply

[
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Centralized system architectures
Basic Client—Server Model
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Characteristics:
- Cilua

There are processes offering services (servers) There are processes that use services (clients)
Clients and servers can be on different machines Clients follow request/reply model with
respect to using services
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Client



Server

Provide service
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Architectures: System architecture Centralized organizations

Multi-tiered centralized system architectures

Some traditional organizations

@ Single-tiered: dumb terminal/mainframe configuration
@ Two-tiered: client/single server configuration
@ Three-tiered: each layer on separate machine

y
Traditional two-tiered configurations
Client machine
‘ User intertqgg User interface User interface User interface User interface
‘\_,/’/’ \ Applicatio’n_\ Application Application
--------- $ "“"‘"----______i____ ‘\_,,/// \ Databas?_\
\Uéér interface //i/"“‘. ————— i ___________ ‘ :—:--i _______
Application Application \“A’\p/)plication ‘ /,/’/“\'
Database Database Database Database [“’Database
Server machine
(a) (b) (C) () (e) )
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Centralized organizations
4 X yall Gledanall

Multi-tiered centralized system architectures
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Some traditional organizations

Single-tiered: dumb terminal/mainframe configuration Two-tiered: client/single server
configuration Three-tiered: each layer on separate machine

JS - lads S Lgﬁj.ﬂ\ @J&J\/dgaud‘ CR oS0 O gl @:J\ LS)SJ.AJ‘ cralaldl/ad ylall ddasall o K0 -52a) g dauha

Traditional two-tiered configurations

Crb giceal) Sl Asadanl) chly KOl

User interface



Client machine

Application

Database

Server machine

Multitiered Architectures
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Architectures: System architecture Centralized organizations

Being client and server at the same time

Three-tiered architecture

Client Application Database
server server

Request | |

operation | |

| ' Request |

i data |
Wait for i Wait for i
reply i data i

i r Return !

' . data :

r Return | |

reply |
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Centralized organizations

Being client and server at the same time

Three-tiered architecture

Client

Application

Database



SCTVCT

operation

Wait for

data
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Return

Return data
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Architectures: System architecture Decentralized organizations: peer-to-peer systems

Alternative organizations

Vertical distribution

Comes from dividing distributed applications into three logical layers, and
running the components from each layer on a different server (machine).

Horizontal distribution

A client or server may be physically split up into logically equivalent parts, but
each part is operating on its own share of the complete data set.

Peer-to-peer architectures

Processes are all equal: the functions that need to be carried out are

represented by every process = each process will act as a client and a server
at the same time (i.e., acting as a servant).
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Alternative organizations
aba) sl

Vertical distribution
Q,SJ J.«d\ CAJ jﬂ\

Comes from dividing distributed applications into three logical layers, and running the
components from each layer on a different server (machine).

it (Glea) pdld e dauda IS e Ol oSl Juan g cdiilaio liada U Y e ) sall chliidatl) andi (e S
Horizontal distribution
gﬁéﬁf\ QAJ Jﬂ\

A client or server may be physically split up into logically equivalent parts, but each part 1s
operating on 1ts own share of the complete data set.



ALKl bl

Peer-to-peer architectures

ki ek Gl jlazs

Processes are all equal: the functions that need to be carried out are represented by every
process ) each process will act as a client and a server at the same time (1.¢., acting as a
servant).
i (g 234 5 JrenS e S st Alas S (8 Lol o a5 om0 il g 12 sl i) aen
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Decentralized Architectures

In the last couple of years we have been seeing a tremendous growth
INn peer-to-peer systems.

@ Structured P2P: nodes are organized following a specific
distributed data structure

@ Unstructured P2P: nodes have randomly selected neighbors

@ Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks: data is
routed over connections setup between the nodes (cf. application-level
multicasting)

4
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2.2 System Architectures
allaill by 2 2
Decentralized Architectures
4 S a3 ‘_f.éj‘
Observation
a5 a

In the last couple of years we have been seeing a tremendous growth
Sila | e lagd Cpaalall Cpalal) 3
1In peer-to-peer systems.
b ) adas daka) 4
Structured P2P: nodes are organized following a specific /
3Adaa 4 bAl Géj dax |l ?J.LAJ eu ?L:.m P2P

distributed data structure
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Unstructured P2P: nodes have randomly selected neighbors
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Hybrid P2P: some nodes are appointed special functions 1n a
| A Aald caills g diall ey st o3 :Hybrid P2P

well-organized fashion
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Note
AT
In virtually all cases, we are dealing with overlay networks: data 1s
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routed over connections setup between the nodes (cf.

application-level

u...l .~S‘ Ls "

multicasting)
(222lall Eull
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Architectures: System architecture Decentralized organizations: peer-to-peer systems

Structured P2P

Essence
Make use of a semantic-free index: each data item is uniquely associated with
a key, in turn used as an index. Common practice: use a hash function

key(data item) = hash(data item’s value).
P2P system now responsible for storing (key,value) pairs.

Looking up d with key k € {0,1,2,...,2% — 1} means routing request to node
with identifier k.
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Structured P2P

P2P Ak

Essence
RH

Make use of a semantic-free index: each data item 1s uniquely associated with a key, 1n turn
used as an 1ndex.
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Common practice: use a hash function

key(data item) = hash(data item’s value).



P2P system now responsible for storing (key,value) pairs. /

Simple example: hypercube
A1 3 Sl oy U

with 1dentifier k. Looking up d with key k 2 {0,1,2,...,24—1} means routing request to node
sadal) ) llall dsa 65 Sk 2 {0,1,2,...,24-1) ZUsall pladiulid ge Gl ol o jrall s

Structured peer-to-peer systems
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Architectures: System architecture Decentralized organizations: peer-to-peer systems

Unstructured P2P

Essence

Each node maintains an ad hoc list of neighbors. The resulting overlay
resembles a random graph: an edge (u, v) exists only with a certain probability

Pl(u, v)].

Searching

@ Flooding: iIssuing node u passes request for d to all neighbors. Request
IS ignored when receiving node had seen it before. Otherwise, v searches
locally for d (recursively). May be limited by a Time-To-Live: a maximum
number of hops.

@ Random walk: issuing node u passes request for d to randomly chosen
neighbor, v. If v does not have d, it forwards request to one of its
randomly chosen neighbors, and so on.
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Unstructured P2P
abaie y& P2P
Essence
R
Each node maintains an ad hoc list of neighbors.
ol (e daiada 48 Base S sy
The resulting overlay resembles a random graph: an edge hu,vi exists only with a certain
probability P[hu,v1].
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Searching



Flooding: 1ssuing node u passes request for d to all neighbors.
Dol s N d alb o dae jJaa) i gladl
Request 1s 1gnored when receirving node had seen it before.
8 e il 8 dalial) 308l () oS5 Lanie callall Jalas Sy
Otherwise, v searches locally for d (recursively).
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May be limited by a Time-To-Live: a maximum number of hops.
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Random walk: 1ssuing node u passes request for d to randomly chosen neighbor, v. If v does
not have d, 1t forwards request to one of 1ts randomly chosen neighbors, and so on.
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Unstructured peer-to-peer systems
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Architectures: System architecture

Super-peer networks

Decentralized organizations: peer-to-peer systems

Essence
It Is sometimes sensible to break the symmetry in pure peer-to-peer networks:

@ When searching in unstructured P2P systems, having index servers
Improves performance

@ Deciding where to store data can often be done more efficiently through
brokers.

e Q¥ o
@ @
QL » G @
B 8
o \ X Super peer
O—< ) Overlay network of super peers /‘,
- '\‘
W L dle
Weak peer (O
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Super-peer networks
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Essence
RH

It 1s sometimes sensible to break the symmetry in pure peer-to-peer networks:

When searching in unstructured P2P systems, having index servers improves performance
Deciding where to store data can often be done more efficiently through brokers.
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Super peer
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Overlay network of super peers
4ai\all ?@‘Jﬁ O AS0E S S

Weak peer
Hierarchically organized peer-to-peer networks
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Architectures: System architecture Decentralized organizations: peer-to-peer systems

Skype’s principle operation: A wants to contact B

Both A and B are on the public Internet

@ A TCP connection is set up between A and B for control packets.
@ The actual call takes place using UDP packets between negotiated ports.

A operates behind a firewall, while B is on the public Internet

@ Asets up a TCP connection (for control packets) to a super peer S
@ S sets up a TCP connection (for relaying control packets) to B
@ The actual call takes place through UDP and directly between A and B

Both A and B operate behind a firewall

@ A connects to an online super peer S through TCP

@ S sets up TCP connection to B.

@ For the actual call, another super peer is contacted to act as arelay R: A
sets up a connection to R, and so will B.

@ All voice traffic is forwarded over the two TCP connections, and through R.
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Skype’s principle operation: A wants to contact B
B - Jua¥) & A 4l Skype dalac

Both A and B are on the public Internet
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A TCP connection 1s set up between A and B for control packets.
281l 2 mIB g A o TCP Jual) dae) &3

The actual call takes place using UDP packets between negotiated ports.
Lede Gamstanl) 23 Al 3Ll 0 UDP aos aladinly Jledll ele Sl 2y

A operates behind a firewall, while B 1s on the public Internet



A sets up a TCP connection (for control packets) to a super peer S S sets up a TCP connection
(for relaying control packets) to B The actual call takes place through UDP and directly
between A and B

9B (S s dis ) TCP Juald dachia gty S (338 yalas ) (oSa3ll o 5ad) TCP Juadl daeb A 5 68
B s A Gnb kil s UDP DA (e dladl] 4l ¢ o)

Both A and B operate behind a firewall
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A connects to an online super peer S through TCP S sets up TCP connection to B.
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For the actual call, another super peer 1s contacted to act as a relay R: A sets up a connection to
R, and so will B.
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All voice traffic 1s forwarded over the two TCP connections, and through R.
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Hierarchically organized peer-to-peer networks
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Architectures: System architecture Hybrid Architectures

Edge-server architecture

Essence

Systems deployed on the Internet where servers are placed at the edge of the
network: the boundary between enterprise networks and the actual Internet.

4

Client Content provider
ISP | ISP
/| \./
Q/\ Core |nt/er_rﬁt/>
Edge server '
< > < > Enterprise network
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Edge-server architecture
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Essence
R

Systems deployed on the Internet where servers are placed at the edge of the network: the
boundary between enterprise networks and the actual Internet.

i iy g A sall Sl G Jaaldl) aal) HASE) Adla e a0l gdl) e gy Gua i) e s unial) dakaVd
ezl

*0

Client
Jiac

Content provider

S siaall 25 5



ISP

Core Internet

Edge server

Enterprise network

@xFxBot dacd gy Cian J: | (33) dada


https://t.me/xfxbot
https://t.me/xfxbot

Architectures: System architecture Hybrid Architectures

Collaboration: The BitTorrent case

Principle: search for a file F

@ Lookup file at a global directory = returns a torrent file

@ Torrent file contains reference to tracker: a server keeping an accurate
account of active nodes that have (chunks of) F.

@ P can join swarm, get a chunk for free, and then trade a copy of that
chunk for another one with a peer Q also in the swarm.

Client node
K out of N nodes
Lookup(F) M Node 1
A BitTorrent . List of nodes //Q Node 2
Web page or > t?grrefﬂtef:le » with (chunks of) [ | .
search engine file F T~ -
Web server File server Tracker \/
Node N
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Principle: search for a file F
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Lookup file at a global directory ) returns a torrent file Torrent file contains reference to
tracker: a server keeping an accurate account of active nodes that have (chunks of) F.
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P can join swarm, get a chunk for free, and then trade a copy of that chunk for another one
with a peer Q also 1n the swarm.
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BitTorrent under the hood

Some essential detalls

@ A tracker for file F returns the set of its downloading processes: the
current swarm.

@ A communicates only with a subset of the swarm: the neighbor set Ny.
@ if Be Nythen also A€ Ng.

@ Neighbor sets are regularly updated by the tracker

Exchange blocks

@ A file is divided into equally sized pieces (typically each being 256 KB)

@ Peers exchange blocks of pieces, typically some 16 KB.

@ A can upload a block d of piece D, only if it has piece D.

@ Neighbor B belongs to the potential set P4 of A, if B has a block that A
needs.

@ If Be Pyand A€ Pg. Aand B are In a position that they can trade a block.
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BitTorrent under the hood

Some essential details

A tracker for file F returns the set of its downloading processes: the current swarm.

A communicates only with a subset of the swarm: the neighbor set NA.
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Neighbor sets are regularly updated by the tracker
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A file 1s divided 1nto equally sized pieces (typically each being 256 KB) Peers exchange
blocks of pieces, typically some 16 KB.
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A can upload a block d of piece D, only if 1t has piece D.
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Neighbor B belongs to the potential set PA of A, 1f B has a block that A needs.
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If B2 PA and A 2 PB: A and B are 1n a position that they can trade a block.
ALY J gl (e ag Sy an g ABSA2PB: AsB 2 PA oS
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BitTorrent phases

Bootstrap phase

A has just received its first piece (through optimistic unchoking: a node from Ny
unselfishly provides the blocks of a piece to get a newly arrived node started).

Trading phase
P4l > 0: there is (in principle) always a peer with whom A can trade.

Last download phase

Pa| = 0: Ais dependent on newly arriving peers in N4 in order to get the last
missing pieces. Ny can change only through the tracker.

36



Architectures: System architecture

ﬁw‘ 4y ull
Hybrid Architectures
g Al
BitTorrent phases
S 5 o) e
Bootstrap phase
Lgill Als

A has just received its first piece (through optimistic unchoking: a node from NA unselfishly
provides the blocks of a piece to get a newly arrived node started).
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Trading phase
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PA| > 0: there 1s (1n principle) always a peer with whom A can trade.
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Last download phase
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PA| = 0: A 1s dependent on newly arriving peers in NA in order to get the last missing pieces.
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NA can change only through the tracker.
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2.4 Self-management in Distributed Systems
Self-managing Distributed Systems

Distinction between system and software architectures blurs when
automatic adaptivity needs to be taken into account:

@ Self-configuration
@ Self-managing

@ Self-healing

@ Self-optimizing

@ Self-*

Warning

There is a lot of hype going on in this field of autonomic computing.
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automatic adaptivity needs to be taken into account:

Self-configuration
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Self-healing

Self-optimizing

Self-*

There 1s a lot of hype going on in this field of autonomic computing.
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2.4 Self-management in Distributed Systems
Feedback Control Model

In many cases, self-* systems are organized as a feedback control
system.

Uncontrollable parameters (disturbance / noise)

|

Initial configuration ’Q Corrections Observed output

»  Core of distributed system
+/'/ \/.
+/-

[/
—— Reference input i
Adjustment Metric
measures |- l estimation
T Analysis <
Measured output

Adjustment triggers
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Core of distributed system
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estimation

Analysis

Adjustment triggers Measured output
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