ITIS 313 Data and Information Management

Spring 2021

Instructor

Dr. Mohammed Ali Eltaher

- Ph.D., in Computer Science & Engineering
 - Social Media Data Mining
- M.S., in Intelligent System
- B.S., in Computer Science
- Email: <u>bineltaher@gmail.com</u>

- Understand the role of databases and database management systems in managing organizational data and information.
- Use at least one conceptual data modeling technique (such as entityrelationship modeling) to capture the information requirements for an enterprise domain.
- Understand the purpose and principles of normalizing a relational database structure.
- Use the data definition, data manipulation, and data control language components of SQL in the context of one widely used implementation of the language.

Course objectives

- Understand the concept of database transaction and apply it appropriately to an application context.
- Understand the role of databases and database management systems in the context of enterprise systems.
- Understand the key principles of data security and identify data security risk and violations in data management system design.
- Understand the core concepts of data quality and their application in an organizational context.
- Understand how structured, semi-structured, and unstructured data are all essential elements of enterprise information and knowledge management.

Course Content

Week	Knowledge Unit	Topics Covered	
1	Introduction	Database approach , Types of database management systems, Basic file processing concepts ,Physical data storage concepts , and File organizations techniques issues	
2, 3	Data Model	Conceptual data model , Logical data model , and Physical data model	
4,5	Database languages and administration	SQL: DDL, DML, and DCL Data and database administration	
6,7	DBMS	Using a DBMS from an application development environment Use of DBMS in an enterprise system context	
8, 9	Data security management	Basic data security principles Data security implementation	
10	Data quality management	Data quality principles , Data quality audits, and Data quality improvement	
11,12	Business intelligence	On-line analytic processing , Data warehousing, and Data mining	

Work and Grading

- Homework assignments
- Midterms, Final
- Labs
- Participation can help on margins
- Academic honesty policy

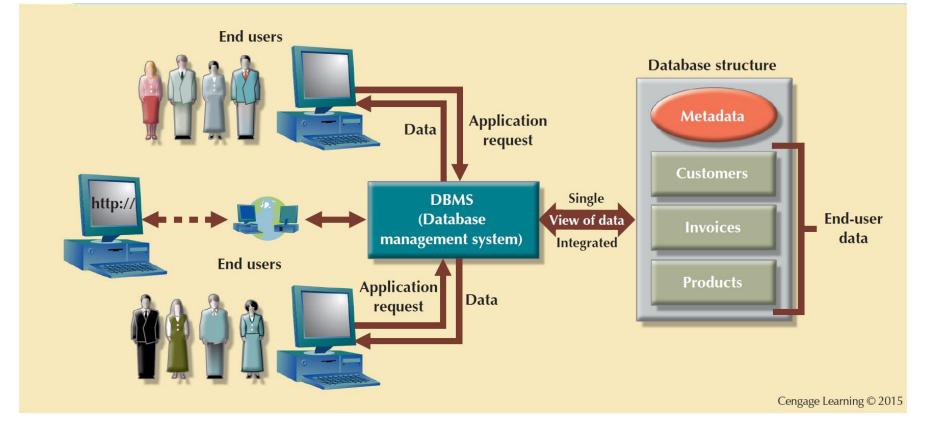
Data vs. Information

Data

- Raw facts
 - Raw data Not yet been processed to reveal the meaning
- Building blocks of information
- Data management
 - Generation, storage, and retrieval of data

Information

- Produced by processing data
- Reveals the meaning of data
- Enables **knowledge** creation
- Should be accurate, relevant, and timely to enable good decision making


Database

- Shared, integrated computer structure that stores a collection of:
 - End-user data Raw facts of interest to end user
 - Metadata: Data about data, which the end-user data are integrated and managed
 - Describe data characteristics and relationships
- Database management system (DBMS)
 - Collection of programs
 - Manages the database structure
 - Controls access to data stored in the database

Role of the DBMS

- Intermediary between the user and the database
- Enables data to be shared
- Presents the end user with an integrated view of the data
- Receives and translates application requests into operations required to fulfill the requests
- Hides database's internal complexity from the application programs and users

Figure 1.2 - The DBMS Manages the Interaction between the End User and the Database

Advantages of the DBMS

- Better data integration and less data inconsistency
 - Data inconsistency: Different versions of the same data appear in different places
- Increased end-user productivity
- Improved:
 - Data sharing
 - Data security
 - Data access
 - Decision making
 - **Data quality**: Promoting accuracy, validity, and timeliness of data

- Single-user database: Supports one user at a time
 - Desktop database: Runs on PC
- Multiuser database: Supports multiple users at the same time
 - Workgroup databases: Supports a small number of users or a specific department
 - Enterprise database: Supports many users across many departments

Types of Databases

- Centralized database: Data is located at a single site
- Distributed database: Data is distributed across different sites
- Cloud database: Created and maintained using cloud data services that provide defined performance measures for the database

- General-purpose databases: Contains a wide variety of data used in multiple disciplines
- Discipline-specific databases: Contains data focused on specific subject areas

- Operational database: Designed to support a company's day-to-day operations
- Analytical database: Stores historical data and business metrics used exclusively for tactical or strategic decision making
 - Data warehouse: Stores data in a format optimized for decision support

16

- Online analytical processing (OLAP)
 - Enable retrieving, processing, and modeling data from the data warehouse
- Business intelligence: Captures and processes business data to generate information that support decision making

- Unstructured data: It exists in their original state
- Structured data: It results from formatting
 - Structure is applied based on type of processing to be performed
- Semistructured data: Processed to some extent
- Extensible Markup Language (XML)
 - Represents data elements in textual format

Database Design

- Focuses on the design of the database structure that will be used to store and manage end-user data
- Well-designed database
 - Facilitates data management
 - Generates accurate and valuable information
- Poorly designed database causes difficult-to-trace errors

Evolution of File System Data Processing

Accomplished through a system of file folders and filing cabinets

Computerized File Systems

Data processing (DP) specialist: Created a computer-based system that would track data and produce required reports

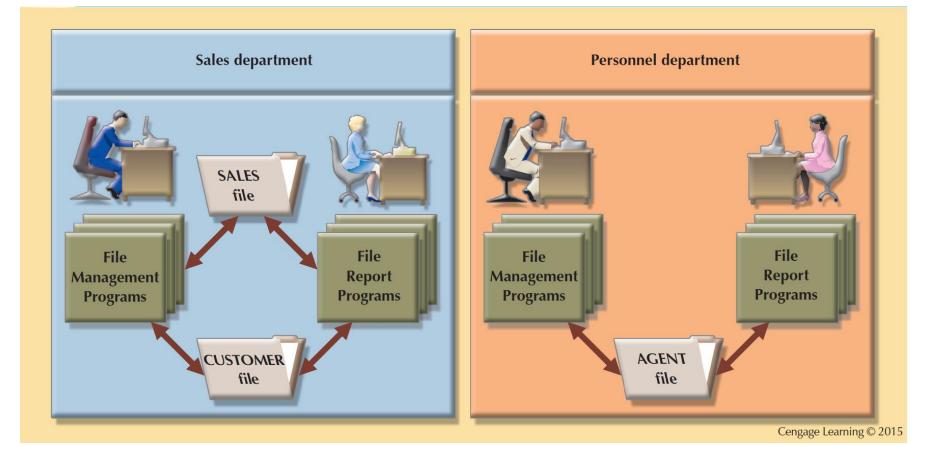

Includes spreadsheet programs such as Microsoft Excel

Table 1.2 - Basic File Terminology

TERM	DEFINITION
Data	Raw facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales value. Data have little meaning unless they have been organized in some logical manner.
Field	A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to define and store data.
Record	A logically connected set of one or more fields that describes a person, place, or thing. For exam- ple, the fields that constitute a record for a customer might consist of the customer's name, address, phone number, date of birth, credit limit, and unpaid balance.
File	A collection of related records. For example, a file might contain data about the students currently enrolled at Gigantic University.

Cengage Learning © 2015

Figure 1.6 - A Simple File System

Problems with File System Data Processing

Lengthy development times

Difficulty of getting quick answers

Complex system administration

Lack of security and limited data sharing

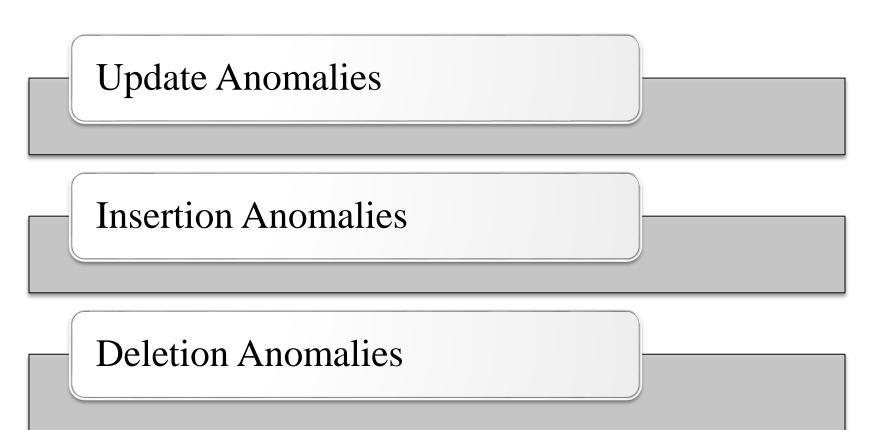
Extensive programming

Structural and Data Dependence

- Structural dependence: Access to a file is dependent on its own structure
 - All file system programs are modified to conform to a new file structure
- Structural independence: File structure is changed without affecting the application's ability to access the data

Structural and Data Dependence

- Data dependence
 - Data access changes when data storage characteristics change
- Data independence
 - Data storage characteristics is changed without affecting the program's ability to access the data
- Practical significance of data dependence is difference between logical and physical format

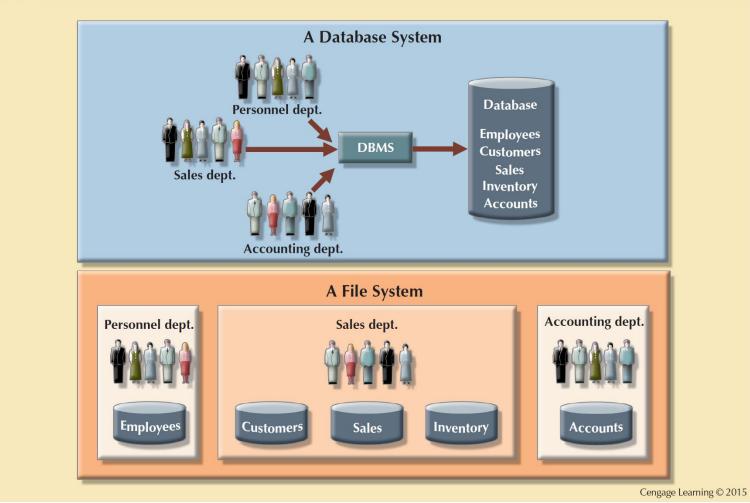

Data Redundancy

- Unnecessarily storing same data at different places
- Islands of information: Scattered data locations
 - Increases the probability of having different versions of the same data

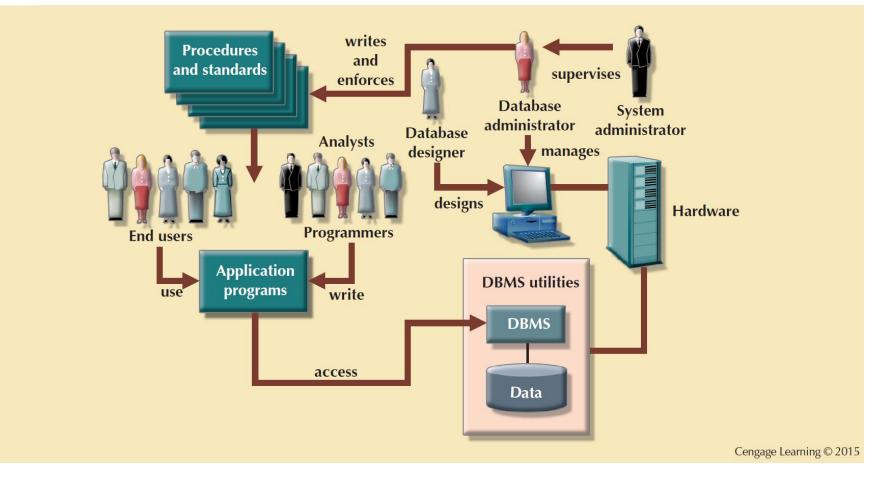
Data Redundancy Implications

- Poor data security
- Data inconsistency
- Increased likelihood of data-entry errors when complex entries are made in different files
- **Data anomaly**: Develops when not all of the required changes in the redundant data are made successfully

Types of Data Anomaly


Lack of Design and Data-Modeling Skills

- Evident despite the availability of multiple personal productivity tools being available
- Data-modeling skills is vital in the data design process
- Good data modeling facilitates communication between the designer, user, and the developer


Database Systems

- Logically related data stored in a single logical data repository
 - Physically distributed among multiple storage facilities
- DBMS eliminates most of file system's problems
- Current generation DBMS software:
 - Stores data structures, relationships between structures, and access paths
 - Defines, stores, and manages all access paths and components

Figure 1.8 - Contrasting Database and File Systems

Figure 1.9 - The Database System Environment

DBMS Functions

Data dictionary management

• Data dictionary: Stores definitions of the data elements and their relationships

Data storage management

• **Performance tuning**: Ensures efficient performance of the database in terms of storage and access speed

Data transformation and presentation

• Transforms entered data to conform to required data structures

Security management

• Enforces user security and data privacy

DBMS Functions

Multiuser access control

• Sophisticated algorithms ensure that multiple users can access the database concurrently without compromising its integrity

Backup and recovery management

• Enables recovery of the database after a failure

Data integrity management

• Minimizes redundancy and maximizes consistency

DBMS Functions

Database access languages and application programming interfaces

- **Query language**: Lets the user specify what must be done without having to specify how
- Structured Query Language (SQL): De facto query language and data access standard supported by the majority of DBMS vendors

Database communication interfaces

• Accept end-user requests via multiple, different network environments

Disadvantages of Database Systems

Increased costs)
Management complexity)
Maintaining currency	
Vendor dependence)
Frequent upgrade/replacement cycles	