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Distributed System: Definition

A distributed system is


 a collection of autonomous computing elements that appears to its users 
as a single coherent system

Two aspects:


 (1) independent computing elements and (2) single system ⇒ middleware.
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Introduction 1.1 Definition

Distributed System: Definition
A distributed system is

a collection of autonomous computing elements that appears
to its users as a single coherent system

Two aspects: (1) independent computing elements and
(2) single system ) middleware.
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What You Will Learn

✤ Building distributed systems requires some fundamental understanding of distribution and concurrency. 
It’s needed because of the two essential problems in distributed systems that make them complex, as 
described below.


First, although systems as a whole operate perfectly correctly nearly all the time, an individual part of 
the system may fail at any time. When a component fails (whether due to a hardware crash, network 
outage, bug in a server, etc.), we have to employ techniques that enable the system as a whole to 
continue operations and recover from failures. Every distributed system will experience component 
failure, often in weird, mysterious, and unanticipated ways.


Second, creating a scalable distributed system requires the coordination of multiple moving parts. Each 
component of the system needs to keep its part of the bargain and process requests as quickly as 
possible. If just one component causes requests to be delayed, the whole system may perform poorly and 
even eventually crash.
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✤ Luckily for us engineers, there’s also an extensive collection of technologies 
that are designed to help us build distributed systems that are tolerant to 
failure and scalable. These technologies embody theoretical approaches and 
complex algorithms that are incredibly hard to build correctly. Using these 
platform-level, widely applicable technologies, our applications can stand 
on the shoulders of giants, enabling us to build sophisticated business 
solutions.
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Specifically, will learn:


The fundamental characteristics of distributed systems, including state 
management, time coordination, concurrency, communications, and 
coordination


Architectural approaches and supporting technologies for building scalable, 
robust services
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The first four Lectures, advocate the need for scalability as a key architectural 
attribute in modern software systems. These Lectures provide broad coverage 
of the basic mechanisms for achieving scalability, the fundamental 
characteristics of distributed systems. This knowledge lays the foundation for 
what follows.
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The last 20 years have seen unprecedented growth in the size, complexity, and 
capacity of software systems. This rate of growth is hardly likely to slow in the 
next 20 years—what future systems will look like is close to unimaginable right 
now. However, one thing we can guarantee is that more and more software 
systems will need to be built with constant growth—more requests, more data, 
and more analysis—as a primary design driver.


Scalable is the term used in software engineering to describe software systems 
that can accommodate growth. In this Lecture we’ll explore what precisely is 
meant by the ability to scale, known (not surprisingly) as scalability. we’ll also 
describe a few examples that put hard numbers on the capabilities and 
characteristics of contemporary applications. Finally, we’ll describe two general 
principles for achieving scalability, replication and optimization, and examine 
the link between scalability and other software architecture quality attributes.
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What Is Scalability?

Intuitively, scalability is a pretty straightforward concept. If we ask Wikipedia 
for a definition, it tells us, “Scalability is the property of a system to handle a 
growing amount of work by adding resources to the system.” We all know 
how we scale a highway system—we add more traffic lanes so it can handle a 
greater number of vehicles. Think of any physical system—a transit system, an 
airport, elevators in a building—and how we increase capacity is pretty 
obvious.
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Put very simply, and without getting into definition wars, scalability defines a 
software system’s capability to handle growth in some dimension of its 
operations. Examples of operational dimensions are:


The number of simultaneous user or external (e.g., sensor) requests a 
system can process


The amount of data a system can effectively process and manage


The value that can be derived from the data a system stores through 
predictive analytics


The ability to maintain a stable, consistent response time as the request load 
grows
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Increasing a system’s capacity in some dimension by increasing resources is 
called scaling up or scaling out. In addition, unlike physical systems, it is 
often equally important to be able to scale down the capacity of a system to 
reduce costs.


The example of this is Netflix, which has a predictable regional   daily load 
that it needs to process. Simply, a lot more people are watching Netflix in 
any geographical region at 9 p.m. than are at 5 a.m. This enables Netflix to 
reduce its processing resources during times of lower load. This saves the 
cost of running the processing nodes that are used in the Amazon cloud, as 
well as societally worthy things such as reducing data center power 
consumption.
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Scalability Basic Design Principles

The basic aim of scaling a system is to increase its capacity in some 
application-specific dimension. A common dimension is increasing the 
number of requests that a system can process in a given time period. This is 
known as the system’s throughput. Let’s use an analogy to explore two basic 
principles we have available to us for scaling our systems and increasing 
throughput: replication and optimization.
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We basically replicate the software processing resources to provide more 
capacity to handle requests and thus increase throughput, as shown in Figure 
below. These replicated processing resources are analogous to the traffic lanes 
on bridges, providing a mostly independent processing pathway for a stream 
of arriving requests.


Luckily, in cloud-based software systems, replication can be achieved at the 
click of a mouse, and we can effectively replicate our processing resources 
thousands of times. We have it a lot easier than bridge builders in that respect. 
Still, we need to take care to replicate resources in order to alleviate real 
bottlenecks. Adding capacity to processing paths that are not overwhelmed 
will add needless costs without providing scalability benefit.
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These examples illustrate the first strategy we have in software systems to increase
capacity. We basically replicate the software processing resources to provide more
capacity to handle requests and thus increase throughput, as shown in Figure 1-1.
These replicated processing resources are analogous to the traffic lanes on bridges,
providing a mostly independent processing pathway for a stream of arriving requests.

Luckily, in cloud-based software systems, replication can be achieved at the click of a
mouse, and we can effectively replicate our processing resources thousands of times.
We have it a lot easier than bridge builders in that respect. Still, we need to take
care to replicate resources in order to alleviate real bottlenecks. Adding capacity to
processing paths that are not overwhelmed will add needless costs without providing
scalability benefit.

Figure 1-1. Increasing capacity through replication

The second strategy for scalability can also be illustrated with our bridge example.
In Sydney, some observant person realized that in the mornings a lot more vehicles
cross the bridge from north to south, and in the afternoon we see the reverse
pattern. A smart solution was therefore devised—allocate more of the lanes to the
high-demand direction in the morning, and sometime in the afternoon, switch this
around. This effectively increased the capacity of the bridge without allocating any
new resources—we optimized the resources we already had available.

We can follow this same approach in software to scale our systems. If we can
somehow optimize our processing by using more efficient algorithms, adding extra
indexes in our databases to speed up queries, or even rewriting our server in a
faster programming language, we can increase our capacity without increasing our
resources. The canonical example of this is Facebook’s creation of (the now discontin‐
ued) HipHop for PHP, which increased the speed of Facebook’s web page generation
by up to six times by compiling PHP code to C++.

I’ll revisit these two design principles—namely replication and optimization—
throughout this book. You will see that there are many complex implications of
adopting these principles, arising from the fact that we are building distributed

10 | Chapter 1: Introduction to Scalable Systems

Increasing capacity through replication
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The second strategy for scalability can also be illustrated with our bridge example. 
In Sydney, some observant person realized that in the mornings a lot more vehicles 
cross the bridge from north to south, and in the afternoon we see the reverse 
pattern. A smart solution was therefore devised—allocate more of the lanes to the 
high-demand direction in the morning, and sometime in the afternoon, switch this 
around. This effectively increased the capacity of the bridge without allocating any 
new resources—we optimized the resources we already had available.


We can follow this same approach in software to scale our systems. If we can 
somehow optimize our processing by using more efficient algorithms, adding extra 
indexes in our databases to speed up queries, or even rewriting our server in a 
faster programming language, we can increase our capacity without increasing our 
resources. The example of this is Facebook’s creation of (the now discontinued) 
HipHop for PHP, which increased the speed of Facebook’s web page generation by 
up to six times by compiling PHP code to C++.
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Scalability and Costs

✤ Let’s take a trivial hypothetical example to examine the relationship between 
scalability and costs. Assume we have a web-based (e.g., web server and 
database) system that can service a load of 100 concurrent requests with a 
mean response time of 1 second. We get a business requirement to scale up 
this system to handle 1,000 concurrent requests with the same response time. 
Without making any changes, a simple load test of this system reveals the 
performance shown in Figure below (left). As the request load increases, we 
see the mean response time steadily grow to 10 seconds with the projected 
load. Clearly this does not satisfy our requirements in its current 
deployment configuration. The system doesn’t scale.
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systems. Distributed systems have properties that make building scalable systems
interesting, which in this context has both positive and negative connotations.

Scalability and Costs
Let’s take a trivial hypothetical example to examine the relationship between scalabil‐
ity and costs. Assume we have a web-based (e.g., web server and database) system
that can service a load of 100 concurrent requests with a mean response time of
1 second. We get a business requirement to scale up this system to handle 1,000
concurrent requests with the same response time. Without making any changes, a
simple load test of this system reveals the performance shown in Figure 1-2 (left). As
the request load increases, we see the mean response time steadily grow to 10 seconds
with the projected load. Clearly this does not satisfy our requirements in its current
deployment configuration. The system doesn’t scale.

Figure 1-2. Scaling an application; non-scalable performance is represented on the le!,
and scalable performance on the right

Some engineering effort is needed in order to achieve the required performance.
Figure 1-2 (right) shows the system’s performance after this effort has been modified.
It now provides the specified response time with 1,000 concurrent requests. And so,
we have successfully scaled the system. Party time!

A major question looms, however. Namely, how much effort and resources were
required to achieve this performance? Perhaps it was simply a case of running the
web server on a more powerful (virtual) machine. Performing such reprovisioning on
a cloud might take 30 minutes at most. Slightly more complex would be reconfiguring
the system to run multiple instances of the web server to increase capacity. Again, this
should be a simple, low-cost configuration change for the application, with no code
changes needed. These would be excellent outcomes.

Scalability and Costs | 11

Scaling an application; non-scalable performance is represented on the left, and scalable performance on the right
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Some engineering effort is needed in order to achieve the required 
performance. Figure above (right) shows the system’s performance after this 
effort has been modified. It now provides the specified response time with 
1,000 concurrent requests. And so, we have successfully scaled the system.


A major question looms, however. Namely, how much effort and resources 
were required to achieve this performance? Perhaps it was simply a case of 
running the web server on a more powerful (virtual) machine. Performing 
such reprovisioning on a cloud might take 30 minutes at most. Slightly more 
complex would be reconfiguring the system to run multiple instances of the 
web server to increase capacity. Again, this should be a simple, low-cost 
configuration change for the application, with no code changes needed. These 
would be excellent outcomes.
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However, scaling a system isn’t always so easy. The reasons for this are many and varied, but 
here are some possibilities:


The database becomes less responsive with 1,000 requests per second, requiring an upgrade to 
a new machine.


The web server generates a lot of content dynamically and this reduces response time under 
load. A possible solution is to alter the code to more efficiently generate the content, thus 
reducing processing time per request.


The request load creates hotspots in the database when many requests try to access and update 
the same records simultaneously. This requires a schema redesign and subsequent reloading of 
the database, as well as code changes to the data access layer.


The web server framework that was selected emphasized ease of development over scalability. 
The model it enforces means that the code simply cannot be scaled to meet the requested load 
requirements, and a complete rewrite is required. Use another framework? Use another 
programming language even?
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There’s a myriad of other potential causes, but hopefully these illustrate the 
increasing effort that might be required as we move from possibility (1) to 
possibility (4).


Now let’s assume option (1), upgrading the database server, requires 15 hours 
of effort and a thousand dollars in extra cloud costs per month for a more 
powerful server. This is not prohibitively expensive. And let’s assume option 
(4), a rewrite of the web application layer, requires 10,000 hours of 
development due to implementing a new language (e.g., Java instead of 
Ruby). Options (2) and (3) fall somewhere in between options (1) and (4). The 
cost of 10,000 hours of development is seriously significant. Even worse, while 
the development is underway, the application may be losing market share and 
hence money due to its inability to satisfy client requests’ loads. These kinds 
of situations can cause systems and businesses to fail.
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Scalability and Architecture Trade-Offs

When we focus on scaling a system, we must also consider how our design 
choices affect other important aspects like performance, availability, security, 
and manageability. These factors are often overlooked but crucial for a well-
functioning system.
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Performance


There’s a simple way to think about the difference between performance and 
scalability. When we target performance, we attempt to satisfy some desired 
metrics for individual requests. This might be a mean response time of less 
than 2 seconds, or a worst-case performance target such as the 99th percentile 
response time less than 3 seconds.


Improving performance is in general a good thing for scalability. If we 
improve the performance of individual requests, we create more capacity in 
our system, which helps us with scalability as we can use the unused capacity 
to process more requests.
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However, it’s not always that simple. We may reduce response times in a 
number of ways. We might carefully optimize our code by, for example, 
removing unnecessary object copying, using a faster JSON serialization library, 
or even completely rewriting code in a faster programming language. These 
approaches optimize performance without increasing resource usage.


An alternative approach might be to optimize individual requests by keeping 
commonly accessed state in memory rather than writing to the database on each 
request. Eliminating a database access nearly always speeds things up. However, 
if our system maintains large amounts of state in memory for prolonged periods, 
we may (and in a heavily loaded system, will) have to carefully manage the 
number of requests our system can handle. This will likely reduce scalability as 
our optimization approach for individual requests uses more resources (in this 
case, memory) than the original solution, and thus reduces system capacity.
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Availability


Availability and scalability are in general highly compatible partners. As we scale our systems 
through replicating resources, we create multiple instances of services that can be used to handle 
requests from any users. If one of our instances fails, the others remain available. The system just 
suffers from reduced capacity due to a failed, unavailable resource. Similar thinking holds for 
replicating network links, network routers, disks, and pretty much any resource in a computing 
system.


Things get complicated with scalability and availability when state is involved. Think of a 
database. If our single database server becomes overloaded, we can replicate it and send requests 
to either instance. This also increases availability as we can tolerate the failure of one instance. 
This scheme works great if our databases are read only. But as soon as we update one instance, we 
somehow have to figure out how and when to update the other instance. This is where the issue 
of replica consistency raises its ugly head.


In fact, whenever state is replicated for scalability and availability, we have to deal with 
consistency.
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Security


Security is a complex, highly technical topic worthy of its own book. No one wants 
to use an insecure system, and systems that are hacked and compromise user data 
cause CTOs to resign, and in extreme cases, companies to fail.


The basic elements of a secure system are authentication, authorization, and 
integrity. We need to ensure data cannot be intercepted in transit over networks, 
and data at rest (persistent store) cannot be accessed by anyone who does not have 
permission to access that data. Basically, I don’t want anyone seeing my credit card 
number as it is communicated between systems or stored in a company’s database.


Hence, security is a necessary quality attribute for any internet-facing systems. The 
costs of building secure systems cannot be avoided, so let’s briefly examine how 
these affect performance and scalability.
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In general, security and scalability are opposing forces. Security necessarily 
introduces performance degradation. The more layers of security a system 
encompasses, then a greater burden is placed on performance, and hence 
scalability. This eventually affects the bottom line—more powerful and 
expensive resources are required to achieve a system’s performance and 
scalability requirements.
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Manageability


As the systems we build become more distributed and complex in their interactions, their 
management and operations come to the fore. We need to pay attention to ensuring every 
component is operating as expected, and the performance is continuing to meet expectations.


Scaling a system invariably means adding new system components—hardware and software. 
As the number of components grows, we have more moving parts to monitor and manage. 
This is never effort-free. It adds complexity to the operations of the system and costs in terms 
of monitoring code that requires developing and observability platform evolution.


The only way to control the costs and complexity of manageability as we scale is through 
automation. This is where the world of DevOps enters the scene. DevOps is a set of practices 
and tooling that combine software development and system operations. DevOps reduces the 
development lifecycle for new features and automates ongoing test, deployment, 
management, upgrade, and monitoring of the system. It’s an integral part of any successful 
scalable system.
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Kubernetes Load Balancers

Kubernetes is an open-source container orchestration platform that is widely used in 
the industry for managing containerized applications. Kubernetes doesn’t deal with 
individual containers directly. Instead, it uses the concept of multiple co-located 
containers. This group of containers is called a Pod.  These pods need to be accessed 
by the users. To achieve this, Kubernetes provides a Load Balancer service that 
distributes traffic across multiple pods and ensures high availability and scalability.


Load Balancers in Kubernetes are used to distribute traffic across multiple pods 
running the same application. They work by distributing incoming traffic across 
multiple backend pods using a round-robin or random algorithm.
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Next figure below show  how HTTP requests are delivered to the pod. 
External clients connect to port 80 of the load balancer and get routed to the 
implicitly assigned node port on one of the nodes. From there, the connection 
is forwarded to one of the pod instances.
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140 CHAPTER 5 Services: enabling clients to discover and talk to pods

See figure 5.7 to see how HTTP requests are delivered to the pod. External clients
(curl in your case) connect to port 80 of the load balancer and get routed to the

Session affinity and web browsers
Because your service is now exposed externally, you may try accessing it with your
web browser. You’ll see something that may strike you as odd—the browser will hit
the exact same pod every time. Did the service’s session affinity change in the
meantime? With kubectl explain, you can double-check that the service’s session
affinity is still set to None, so why don’t different browser requests hit different
pods, as is the case when using curl?

Let me explain what’s happening. The browser is using keep-alive connections and
sends all its requests through a single connection, whereas curl opens a new
connection every time. Services work at the connection level, so when a connection to a
service is first opened, a random pod is selected and then all network packets belonging
to that connection are all sent to that single pod. Even if session affinity is set to None,
users will always hit the same pod (until the connection is closed).

Kubernetes cluster

External client

Load balancer

IP: 130.211.53.173:80

Pod

Node 2

IP: 130.211.99.206

Node 1

IP: 130.211.97.55

Port 32143

Port 8080

PodPort 8080

Pod

Port 32143

Port 8080

Service

Figure 5.7 An external client connecting to a LoadBalancer service

 

An external client connecting to a LoadBalancer service



Load Balancers provide several benefits, including:


High Availability: Load Balancers ensure that traffic is always routed to 
available pods, even if some of the pods are down or unreachable. This ensures 
high availability and uptime for the application.


Scalability: Load Balancers can distribute traffic across multiple pods, which 
allows for horizontal scaling of the application. As more traffic comes in, 
additional pods can be added to the backend, and the Load Balancer will 
distribute the traffic accordingly.


Security: Load Balancers can provide SSL termination( Secure Sockets Layer, a 
security protocol that creates an encrypted link between a web server and a web 
browser), which ensures that traffic is encrypted between the client and the Load 
Balancer. This enhances security and protects against potential attacks.
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Kubernetes Load Balancers provide several features that benefit networking, including:


Service Discovery: Load Balancers provide a single endpoint that can be used to access 
multiple pods running the same application. This simplifies service discovery and makes it 
easier to access and manage multiple pods.


Load Balancing Algorithms: Load Balancers can use different algorithms to distribute 
traffic across multiple backend pods.


This allows for more fine-grained control over traffic distribution and can help optimize 
performance.


Health Checks: Load Balancers can monitor the health of backend pods and automatically 
route traffic away from unhealthy or failing pods. This ensures that traffic is always routed 
to healthy and available pods, which enhances reliability and uptime.
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Load balancers ensure that containerized applications have improved 
reliability and uptime by distributing traffic across multiple instances of a 
service and preventing any one instance from becoming overloaded. This 
prevents any one instance from becoming overwhelmed. This results in a 
system that is both highly available and resilient, meaning that it can 
withstand spikes in traffic and manage high volumes of traffic without 
experiencing any downtime.


Kubernetes Load Balancers are able to provide more advanced features thanks 
to tools like HAProxy, which enable them to perform tasks like SSL 
termination, content-based routing, and session persistence. This further 
improves security by encrypting traffic and routing it to the appropriate 
backend service based on the criteria that have been specified.
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Exploring HAProxy

HAProxy is a popular choice for use as a load balancing software in production 
environments because of its dependability, scalability, and high-performance capabilities. It 
is an open-source programme. It is possible to deploy it either on-premises or in the cloud, 
and it can be used for many different kinds of applications and protocols, including HTTP, 
TCP, and UDP.


HAProxy is built with a multi-process architecture, which enables it to manage a large 
number of concurrent connections and requests. This is a key feature of the product. It uses 
a single master process that manages multiple worker processes, each of which can handle 
multiple connections simultaneously. This master process is managed by another master 
process. Because of its architecture, HAProxy is capable of horizontal scaling, which enables 
it to manage large volumes of traffic while also preserving its high availability.
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Advantages of HAProxy Kubernetes Ingress Controller

Scalability: HAProxy has the ability to scale horizontally to manage large volumes of traffic, making it possible to 
guarantee that containerized services are always accessible and quick to respond.


Load Balancing: It is achieved through the use of HAProxy's proprietary load balancing algorithms, which ensure that 
incoming traffic is efficiently distributed across all backend services.


Security: HAProxy is capable of terminating SSL connections, encrypting and decrypting traffic, and protecting 
against man-in-the-middle attacks and eavesdropping.


Reliability: The health checks and automatic failover capabilities offered by HAProxy guarantee that containerized 
services will continue to be accessible and responsive at all times, even in the event that the underlying backend 
server fails.


Flexibility: HAProxy's content-based routing enables developers to define routing rules based on specific criteria, such 
as URL path, HTTP headers, or source IP address, which allows for more granular control over how traffic is routed. 
HAProxy's other benefit is that this gives users more options.
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