
1

Lecture 02: Web Browsers

The main responsibilities of a browser are as follows:

1. Generate and send requests to Web servers on the user’s behalf, as a result of following

hyperlinks, explicit typing of URLs, submitting forms, and parsing HTML pages that require

auxiliary resources (e.g. images).

2. Accept responses delivered by Web servers and interpret them to produce the visual

representation to be viewed by the user. This will, at a bare minimum, involve examination of

certain response headers such as Content-Type to determine what action needs to be taken

and what sort of rendering is required.

3. Render the results in the browser window or through a third party tool, depending on the

content type of the response.

Depending on the status code and headers in the response, browsers are called upon to

perform other tasks, including:

1. Caching: the browser must make determinations as to whether or not it needs to request data

from the server at all. It may have a cached copy of the same data item that it retrieved during a

previous request. If so, and if this cached copy has not ‘expired’, the browser can eliminate a

superfluous request for the resource. In other cases, the server can be queried to determine if

the resource has been modified since it was originally retrieved and placed in the cache.

Significant performance benefits can be achieved through caching.

2. Authentication: since web servers may require authorization credentials to access resources

it has designated as secure, the browser must react to server requests for credentials, by

prompting the user for authorization credentials, or by utilizing credentials it has already asked

for in prior requests.

3. State maintenance: to record and maintain the state of a browser session across requests

and responses, web servers may request that the browser accept cookies, which are sets of

name/value pairs included in response headers. The browser must store the transmitted cookie

information and make it available to be sent back in appropriate requests. In addition, the

browser should provide configuration options to allow users the choice of accepting or rejecting

cookies.

4. Requesting supporting data items: the typical web page contains images, sounds, and a

variety of other ancillary objects. The proper rendering of the page is dependent upon the

browser’s retrieving those supporting data items for inclusion in the rendering process. This

normally occurs transparently without user intervention.

5. Taking actions in response to other headers and status codes: the HTTP headers and the

status code do more than simply provide the data to be rendered by the browser. In some

cases, they provide additional processing instructions, which may extend or supersede

rendering information found elsewhere in the response. The presence of these instructions may

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
المسؤوليات الرئيسية للمتصفح

Bushra
Highlight

Bushra
Typewriter
إنشاء وإرسال الطلبات إلى خوادم الويب نيابة عن المستخدم

Bushra
Highlight

Bushra
Typewriter
اقبل الاستجابات التي ترسلها خوادم الويب وقم بتفسيرها لإنتاج التمثيل المرئي الذي سيراه المستخدم.

Bushra
Highlight

Bushra
Typewriter
اعرض النتائج في نافذة المتصفح أو من خلال أداة جهة خارجية ، اعتمادًا على نوع محتوى الاستجابة.

Bushra
Typewriter
بناءً على رمز الحالة والعناوين في الاستجابة ، يتم استدعاء المتصفحات لأداء مهام أخرى ، بما في ذلك:

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يجب أن يتخذ المستعرض قرارات بشأن ما إذا كان يحتاج إلى طلب البيانات من الخادم على الإطلاق أم لا.

Bushra
Highlight

Bushra
Typewriter
قد يحتوي على نسخة مخبأة من نفس عنصر البيانات الذي تم استرداده أثناء طلب سابق

Bushra
Typewriter
إذا كان الأمر كذلك ، وإذا لم "تنتهي صلاحية" هذه النسخة المخبأة ، يمكن للمتصفح التخلص من الطلب الزائد للمورد. في حالات أخرى ، يمكن الاستعلام عن الخادم لتحديد ما إذا كان قد تم تعديل المورد منذ أن تم استرداده في الأصل ووضعه في ذاكرة التخزين المؤقت.
يمكن تحقيق فوائد أداء كبيرة من خلال التخزين المؤقت.

Bushra
Typewriter
نظرًا لأن خوادم الويب قد تتطلب بيانات اعتماد للوصول إلى الموارد التي عينتها على أنها آمنة ، يجب أن يتفاعل المتصفح مع طلبات الخادم للحصول على بيانات الاعتماد ، عن طريق مطالبة المستخدم ببيانات اعتماد التفويض ، أو عن طريق استخدام بيانات الاعتماد التي طلبها بالفعل في الطلبات السابقة

Bushra
Typewriter
صيانة الحالة: لتسجيل حالة جلسة المتصفح والحفاظ عليها عبر الطلبات والاستجابات ، قد تطلب خوادم الويب أن يقبل المتصفح ملفات تعريف الارتباط ، وهي مجموعات من أزواج الاسم / القيمة المضمنة في رؤوس الاستجابة. يجب أن يقوم المستعرض بتخزين معلومات ملفات تعريف الارتباط المنقولة وإتاحتها لإرسالها مرة أخرى في الطلبات المناسبة. بالإضافة إلى ذلك ، يجب أن يوفر المتصفح خيارات التكوين للسماح للمستخدمين باختيار قبول ملفات تعريف الارتباط أو رفضها

Bushra
Typewriter
طلب عناصر البيانات الداعمة: تحتوي صفحة الويب النموذجية على صور وأصوات ومجموعة متنوعة من العناصر المساعدة الأخرى. يعتمد العرض الصحيح للصفحة على قيام المتصفح باسترداد عناصر البيانات الداعمة لإدراجها في عملية العرض. يحدث هذا عادة بشفافية دون تدخل المستخدم.

Bushra
Typewriter
اتخاذ إجراءات استجابةً للرؤوس ورموز الحالة الأخرى: تعمل رؤوس HTTP ورمز الحالة أكثر من مجرد توفير البيانات التي سيقدمها المتصفح. في بعض الحالات ، يقدمون تعليمات معالجة إضافية ، والتي قد توسع أو تحل محل معلومات العرض الموجودة في مكان آخر في الاستجابة.

2

indicate a problem in accessing the resource, and may instruct the browser to redirect the

request to another location. They may also indicate that the connection should be kept open, so

that further requests can be sent over the same connection. Many of these functions are

associated with advanced HTTP functionality found in HTTP/1.1.

6. Rendering complex objects: most web browsers inherently support content types such as

text/html, text/plain, image/gif, and image/jpeg. This means that the browser provides native

functionality to render objects with these contents inline: within the browser window, and without

having to install additional software components. To render or play back other more complex

objects (e.g. audio, video, and multimedia), a browser must provide support for these content

types. Mechanisms must exist for invoking external helper applications or internal plug-ins that

are required to display and playback these objects.

7. Dealing with error conditions: connection failures and invalid responses from servers are

among the situations the browser must be equipped to deal with.

Architecture of Web Browser

The following list delineates the core functions associated with a Web browser. Each function

can be thought of as a distinct module within the browser. Obviously these modules must

communicate with each other in order to allow the browser to function, but they should each be

designed atomically.

• User Interface: this module is responsible for providing the interface through which users

interact with the application. This includes presenting, displaying, and rendering the end result

of the browser’s processing of the response transmitted by the server.

• Request Generation: this module bears responsibility for the task of building HTTP requests to

be submitted to HTTP servers. When asked by the User Interface module or the Content

Interpretation module to construct requests based on relative links, it must first resolve those

links into absolute URLs.

• Response Processing: this module must parse the response, interpret it, and pass the result to

the User Interface module.

• Networking: this module is responsible for network communications. It takes requests passed

to it by the Request Generation module and transmits them over the network to the appropriate

Web server or proxy. It also accepts responses that arrive over the network and passes them to

the Response Processing module. In the course of performing these tasks, it takes

responsibility for establishing network connections and dealing with proxy servers specified in a

user’s network configuration options.

• Content Interpretation: having received the response, the Response Processing module needs

help in parsing and deciphering the content. The content may be encoded, and this module is

responding to decode it. Initial responses often have their content types set to text/html, but

HTML responses embed or contain references to images, multimedia objects, JavaScript code,

and style sheet information. This module performs the additional processing necessary for

browser applications to understand these entities within a response. In addition, this module

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
قد يشير وجود هذه الإرشادات إلى وجود مشكلة في الوصول إلى المورد ، وقد يوجه المتصفح لإعادة توجيه ملف
طلب إلى مكان آخر. قد تشير أيضًا إلى أن الاتصال يجب أن يظل مفتوحًا ، لذلك
يمكن إرسال طلبات أخرى عبر نفس الاتصال. العديد من هذه الوظائف
المرتبطة بوظائف HTTP المتقدمة الموجودة في HTTP / 1.1

Bushra
Typewriter
تدعم معظم متصفحات الويب أنواع المحتوى مثل text / html و text / normal و image / gif و image / jpeg. هذا يعني أن المستعرض يوفر وظائف أصلية لعرض الكائنات مع هذه المحتويات مضمنة: داخل نافذة المتصفح ، ودون الحاجة إلى تثبيت مكونات برامج إضافية. لعرض أو تشغيل كائنات أخرى أكثر تعقيدًا (مثل الصوت والفيديو والوسائط المتعددة) ، يجب أن يوفر المستعرض دعمًا لهذه المحتويات
أنواع. يجب أن توجد آليات لاستدعاء التطبيقات المساعدة الخارجية أو المكونات الإضافية الداخلية التي
لعرض هذه الكائنات وتشغيلها.

Bushra
Typewriter
التعامل مع حالات الخطأ: تعد حالات فشل الاتصال والاستجابة غير الصالحة من الخوادم من بين المواقف التي يجب أن يكون المتصفح مجهزًا للتعامل معها.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
هذه الوحدة مسؤولة عن توفير الواجهة التي من خلالها يمكن للمستخدمين تتفاعل مع التطبيق. يتضمن ذلك تقديم وعرض وتقديم النتيجة النهائية لمعالجة المتصفح للاستجابة المرسلة من الخادم.

Bushra
Typewriter
هذه الوحدة تتحمل مسؤولية مهمة بناء طلبات HTTP لتقديمها إلى خوادم HTTP. عندما تُطلب من وحدة واجهة المستخدم أو وحدة تفسير المحتوى إنشاء طلبات بناءً على الروابط النسبية ، يجب أولاً حل هذه الروابط إلى عناوين URL مطلقة.

Bushra
Typewriter
يجب على هذه الوحدة تحليل الاستجابة وتفسيرها وتمرير النتيجة إلى وحدة واجهة المستخدم.

Bushra
Highlight

Bushra
Typewriter
هذه الوحدة مسؤولة عن اتصالات الشبكة

Bushra
Typewriter
يأخذ الطلبات التي يتم تمريرها إليه من خلال وحدة إنشاء الطلب وينقلها عبر الشبكة إلى خادم الويب أو الوكيل المناسب. كما أنه يقبل الردود التي تصل عبر الشبكة ويمررها إلى وحدة معالجة الاستجابة. في سياق أداء هذه المهام ، يتحمل مسؤولية إنشاء اتصالات الشبكة والتعامل مع الخوادم الوكيلة المحددة في خيارات تكوين شبكة المستخدم.

Bushra
Typewriter
بعد تلقي الاستجابة ، تحتاج وحدة معالجة الاستجابة إلى المساعدة في تحليل وفك تشفير المحتوى.

Bushra
Highlight

3

must tell the Request Generation module to construct additional requests for the retrieval of

auxiliary content such as images, and other objects.

• Caching: caching provides web browsers with a way to economize by avoiding the

unnecessary retrieval of resources that the browser already has a usable copy of, ‘cached’

away in local storage. Browsers can ask Web servers whether a desired resource has been

modified since the time that the browser initially retrieved it and stored it in the cache. This

module must provide facilities for storing copies of retrieved resources in the cache for later use,

for accessing those copies when viable, and for managing the space (both memory and disk)

allocated by the browser’s configuration parameters for this purpose.

• State Maintenance: since HTTP is a stateless protocol, some mechanism must be in place to

maintain the browser state between related requests and responses. Cookies are the

mechanism of choice for performing this task, and support for cookies is in the responsibility of

this module.

• Authentication: this module takes care of composing authorization credentials when requested

by the server. It must interpret response headers demanding credentials by prompting the user

to enter them (usually via a dialog). It must also store those credentials, but only for the duration

of the current browser session, in case a request is made for another secured resource in what

the server considers to be the same security ‘realm’. (This absolves the user of the need to re-

enter the credentials each time a request for such resources is made.)

• Configuration: finally, there are a number of configuration options that a browser application

needs to support. Some of these are fixed, while others are user definable. This module

maintains the fixed and variable configuration options for the browser, and provides an interface

for users to modify those options under their control.

PROCESSING FLOW

The following diagram shows the processing flow for the creation and transmission of a request

in a typical browser. We begin with a link followed by a user. Users can click on hyperlinks

presented in the browser display window, they might choose links from lists of previously visited

links (history or bookmarks), or they might enter a URL manually. In each of these cases,

processing begins with the User Interface module, which is responsible for presenting the

display window and giving users access to browser functions (e.g. through menus and shortcut

keys).

In general, an application using a GUI (graphical user interface) operates using an event model.

User actions—clicking on highlighted hyperlinks, for example—are considered events that must

be interpreted properly by the User Interface module

Bushra
Highlight

Bushra
Typewriter
يجب أن تخبر وحدة إنشاء الطلب بإنشاء طلبات إضافية لاسترداد المحتوى الإضافي مثل الصور والكائنات الأخرى.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يوفر التخزين المؤقت لمتصفحات الويب طريقة للاقتصاد من خلال تجنب
استرداد غير ضروري للموارد التي يحتوي المتصفح بالفعل على نسخة قابلة للاستخدام منها ، "مخبأة"
بعيدًا في التخزين المحلي

Bushra
Typewriter
يمكن للمتصفحات أن تطلب من خوادم الويب ما إذا كان المورد المطلوب قد تم
تم تعديله منذ الوقت الذي استعاده المتصفح في البداية وقام بتخزينه في ذاكرة التخزين المؤقت. هذه
يجب أن توفر الوحدة النمطية تسهيلات لتخزين نسخ من الموارد المستردة في ذاكرة التخزين المؤقت لاستخدامها لاحقًا ،
للوصول إلى هذه النسخ عندما تكون قابلة للتطبيق ، ولإدارة المساحة (الذاكرة والقرص)
المخصصة بواسطة معلمات تكوين المتصفح لهذا الغرض.

Bushra
Highlight

Bushra
Typewriter
نظرًا لأن HTTP بروتوكول عديم الحالة ، يجب وضع آلية للحفاظ على حالة المتصفح بين الطلبات والاستجابات ذات الصلة. ملفات تعريف الارتباط هي الآلية المختارة لأداء هذه المهمة ، ويتحمل دعم ملفات تعريف الارتباط مسؤولية هذه الوحدة.

Bushra
Typewriter
تهتم هذه الوحدة بتكوين بيانات اعتماد التفويض عند طلب الخادم لها. يجب أن يفسر رؤوس الاستجابة التي تطالب ببيانات الاعتماد عن طريق مطالبة المستخدم بإدخالها (عادةً عبر مربع حوار). يجب أيضًا تخزين بيانات الاعتماد هذه ، ولكن فقط لمدة جلسة المتصفح الحالية ، في حالة تقديم طلب لمورد آمن آخر فيما يعتبره الخادم نفس "مجال" الأمان. (هذا يعفي المستخدم من الحاجة إلى إعادة إدخال بيانات الاعتماد في كل مرة يتم فيها تقديم طلب لمثل هذه الموارد.)

Bushra
Highlight

Bushra
Typewriter
ترتيب

Bushra
Typewriter
أخيرًا ، هناك عدد من خيارات التكوين التي يحتاج تطبيق المتصفح إلى دعمها.

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
بينما يمكن تعريف البعض الآخر من قبل المستخدم

Bushra
Typewriter
تحافظ هذه الوحدة على خيارات التكوين الثابتة والمتغيرة للمتصفح ، وتوفر واجهة للمستخدمين لتعديل تلك الخيارات تحت سيطرتهم.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

4

• Entering URLs manually: usually, this is accomplished by providing a text entry box in which

the user can enter a URL, as well as through a menu option (File→ Open) that opens a dialog

box for similar manual entry.

• Selecting previously visited links: the existence of this mechanism, naturally, implies that the

User Interface module must also provide a mechanism for maintaining a history of visited links.

The maximum amount of time that such links will be maintained in this list, as well as the

maximum size to which this list can grow, can be established as a user-definable parameter in

the Configuration module. The ‘Location’ or ‘Address’ text area in the browser window can be a

dropdown field that allows the user to select from recently visited links. The ‘Back’ button allows

users to go back to the page they were visiting previously. In addition, users should be able to

save particular links as “bookmarks”, and then access these links through the user interface at a

later date.

• Selecting displayed hyperlinks: there are a number of ways for users to select links displayed

on the presented page. In desktop browsers, the mouse click is probably the most common

mechanism for users to select a displayed link, but there are other mechanisms on the desktop

and on other platforms as well. Since the User Interface module is already responsible for

rendering text according to the specifications found in the page’s HTML markup, it is also

responsible for doing some sort of formatting to highlight a link so that it stands out from other

text on the page. Most desktop browsers also change the cursor shape when the mouse is

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
اختيار الروابط التي تمت زيارتها مسبقًا:

Bushra
Typewriter
تحديد الارتباطات التشعبية المعروضة:

5

‘over’ a hyperlink, indicating that this is a valid place for users to click. Highlighting mechanisms

vary for non-desktop platforms, but they should always be present in some form.

Once the selected or entered link is passed on to the Request Generation module, it must be

resolved. Links found on a displayed page can be either absolute or relative. Absolute URLs are

complete URLs, containing all the required URL components, e.g. protocol://host/path. These

do not need to be resolved and can be processed without further intervention. A relative URL

specifies a location relative to:

1. the current location being displayed (i.e. the entire URL including the path, up to the directory

in which the current URL resides), when the HREF contains a relative path that does not begin

with a slash, e.g.:), or

2. the current location’s web server root (i.e., only the host portion of the URL), when the HREF

contains a relative path that does begin with a slash, e.g. <A HREF="/root level

directory/another file name.html">.

Current URL: http://www.myserver.com/mydirectory/index.html

... →

http://www.myserver.com/mydirectory/anotherdirectory/page2.html

...

http://www.myserver.com/rootleveldirectory/homepage.html

Current URL: http://www.myserver.com/mydirectory/anotherpage.html

...

http://www.myserver.com/mydirectory/anotherdirectory/page2.html

...

http://www.myserver.com/yetanotherdirectory/homepage.html

Current URL: http://www.myserver.com/mydirectory/differentpage.html

<BASE HREF ="http://www.yourserver.com/otherdir/something.html">

...

http://www.yourserver.com/otherdir/anotherdirectory/page2.html

...

http://www.yourserver.com/yetanotherdirectory/homepage.html

The process of resolution changes if an optional <BASE HREF ="..."> tag is found in the HEAD

section of the page. The URL specified in this tag replaces the current location as the “base”

from which resolution occurs in the previous examples. Once the URL has been resolved, the

Request Generation module builds the request, which is ultimately passed to the Networking

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يجب حلها

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

6

module for transmission. To accomplish this task, the Request Generation module has to

communicate with other browser components:

• It asks the Caching module “Do I already have a copy of this resource?” If so, it needs to

determine whether it can simply use this copy, or whether it needs to ask the server if the

resource has been modified since the browser cached a copy of this resource.

• It asks the Authorization module “Do I need to include authentication credentials in this

request?” If the browser has not already stored credentials for the appropriate domain, it may

need to contact the User Interface module, which prompts the user for credentials.

• It asks the State Mechanism module “Do I need to include Cookie headers in this request?” It

must determine whether the requested URL matches domain and path patterns associated with

previously stored cookies.

The constructed request is passed to the Networking module so it can be transmitted over the

network.

Once a request has been transmitted, the browser waits to receive a response. It may submit

additional requests while waiting. Requests may have to be resubmitted if the connection is

closed before the corresponding responses are received. It is the server’s responsibility to

transmit responses in the same order as the corresponding requests were received. However,

the browser is responsible for dealing with servers that do not properly maintain this order, by

delaying the processing of responses that arrive out of sequence. The above diagram describes

the flow for this process. A response is received by the Networking module, which passes it to

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
لإنجاز هذه المهمة ، يجب أن تقوم وحدة إنشاء الطلب
التواصل مع مكونات المتصفح الأخرى:

7

the Response Processing module. This module must also cooperate and communicate with

other modules to do its job. It examines response headers to determine required actions.

• If the status code of the response is 401 Not Authorized, this means that the request lacked

necessary authorization credentials. The Response Processing module asks the Authorization

module whether any existing credentials might be used to satisfy the request. The Authorization

module may, in turn, contact the User Interface module, which would prompt the user to enter

authorization credentials. In either case, this results in the original request being retransmitted

with an Authorization header containing the required credentials.

• If the response contains Set-Cookie headers, the State Maintenance module must store the

cookie information using the browser’s persistence mechanism.

Next, the response is passed to the Content Interpretation module, which has a number of

responsibilities:

• If the response contains Content-Transfer-Encoding and/or Content Encoding headers, the

module needs to decode the body of the response.

• The module examines the Cache-Control, Expires, to determine whether the browser needs to

cache the decoded content of the response. If so, the Caching module is contacted to create a

new cache entry or update an existing one.

• The Content-Type header determines the MIME type of the response content. Different MIME

types, naturally, require different kinds of content processing. Modern browsers support a

variety of content types natively, including HTML (text/html), graphical images (image/gif, and

image/jpeg), and sounds (audio/wav). Native support means that processing of these content

types is performed by built-in browser components. Thus, the Content Interpretation module

must provide robust support for such processing. Leading edge browsers already provide

support for additional content types, including vector graphics and XSL style sheets.

• For MIME types that are not processed natively, browsers usually provide support

mechanisms for the association of MIME types with helper applications and plug-ins. Helper

applications render content by invoking an external program that executes independent of the

browser, while plug-ins render content within the browser window. The Content Interpretation

module must communicate with the Configuration module to determine what plug-ins are

installed and what helper application associations have been established, to take appropriate

action when receiving content that is not natively supported by the browser. This involves a

degree of interaction with the operating system, to determine system-level associations

configured for filename extensions, MIME types, and application programs. However, many

browsers override (or even completely ignore) these settings, managing their own sets of

associations through the Configuration module.

• Some content types (e.g. markup languages, Flash movies) may embed references to other

resources needed to satisfy the request. For instance, HTML pages may include references to

images or JavaScript components. The Content Interpretation module must parse the content

prior to passing it on to the User Interface module, determining if additional requests will be

Bushra
Highlight

Bushra
Highlight

8

needed. If so, URLs associated with these requests get resolved when they are passed to the

Request Generation module.

As each of the requested resources arrives in sequence, it is passed to the User Interface

module so that it may be incorporated in the final presentation. The Networking module

maintains its queue of requests and responses, ensuring that all requests have been satisfied,

and resubmitting any outstanding requests.

All along the way, various subordinate modules are asked questions to determine the course of

processing (including whether or not particular tasks need to be performed at all). For example,

the Content Interpretation module may say ‘This page has IMG tags, so we must send HTTP

requests to retrieve the associated images,’ but the Caching module may respond by saying

‘We already have a usable copy of that resource, so don’t bother sending a request to the

network for it.’ (Alternatively, it may say ‘We have a copy of that resource, but let’s ask the

server if its copy of the resource is more recent; if it’s not, it doesn’t need to send it back to us.’)

Or the Configuration module may say ‘No, don’t send a request for the images on this page, this

user has a slow connection and has elected not to see images.’ Or the State Maintenance

mechanism may jump in and say ‘Wait, we’ve been to this site before, so send along this

identifying cookie information with our requests.’

PROCESSING HTTP REQUESTS AND RESPONSES

Let us examine how browsers build and transmit HTTP requests, and how they receive,

interpret, and present HTTP responses. After we have covered the basics of constructing

requests and interpreting responses, we can look at the more complex interactions involved

when HTTP transactions involve caching, authorization, cookies, request of supporting data

items, and multimedia support.

HTTP requests

The act of sending an HTTP request to a web server, in its most trivial form, consists of two

basic steps: constructing the HTTP request, and establishing a connection to transmit it across

the Internet to the target server or an intermediate proxy. The construction of requests is the

responsibility of the Request Generation module. Once a request has been properly

constructed, this module passes it to the Networking module, which opens the socket to

transmit it either directly to the server or to a proxy. Before the Request Generation module has

even begun the process of building the request, it needs to ask a whole series of questions of

the other modules:

1. Do I already have a cached copy of this resource? If an entry exists in the cache that satisfies

this same request, then the transmitted request should include an If-Modified-Since header,

containing the last modification time associated with the stored cache entry. If the resource

found on the server has not been modified since that time, the response will come back with a

304 Not Modified status code, and that cache entry can be passed directly to the User Interface

module.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يتكون من خطوتين أساسيتين: إنشاء طلب HTTP ، وإنشاء اتصال لنقله عبر الإنترنت إلى الخادم الهدف أو وكيل وسيط.

9

2. Is there any additional information I need to send as part of this request? If this request is part

of a series of requests made to a particular web server, or if the target web server has been

visited previously, it may have sent “state” information (in the form of Set-Cookie headers) to the

browser. The browser must set and maintain cookies according to the server instructions: either

for a specified period of time or for the duration of the current session. In addition, the set of

saved cookies must be examined prior to sending a request to determine whether cookie

information needs to be included in that request. (State Maintenance)

3. Is there any other additional information I need to send as part of this request? If this

resource is part of an authorization realm for which the user has already supplied authentication

credentials, those credentials should be stored by the browser for the duration of a session, and

should be supplied with requests for other resources in the same realm. (Authorization)

User preferences may modify the nature of the request, possibly even eliminating the need for

one entirely. For example, users may set a preference via the Configuration module telling the

browser not to request images found within an HTML page. They can turn off Java applet

support, meaning that requests for applets need not be processed. They can also instruct the

browser to reject cookies, meaning that the browser does not need to worry about including

Cookie headers in generated requests.

In the previous lecture we studied the HTTP protocol, we described the general structure of

HTTP requests, and provided some examples. To refresh our memories, here is the format of

an HTTP request:

METHOD /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

An HTTP request contains a request line, followed by a series of headers (one per line),

followed by a blank line. The blank line may serve as a separator, delimiting the headers from

an optional body portion of the request. A typical example of an HTTP request might look

something like this:

POST /update.cgi HTTP/1.0

Host: www.somewhere.com

Referer: http://www.somewhere.com/formentry.html

name=joe&type=info&amount=5

The process of constructing an HTTP request typically begins when a web site visitor sees a

link on a page and clicks on it, telling the browser to present the content associated with that

link. There are other possibilities, such as entering a URL manually, or a browser connecting to

a default home page when starting up, but this example allows us to describe typical browser

activity more comprehensively.

Bushra
Highlight

Bushra
Highlight

10

Constructing the request line When a link is selected, the browser’s User Interface module

reacts to an event. A GUI-based application operates using an event model, in which user

actions (e.g. typing, mouse clicking) are translated into events that the application responds to.

In response to a mouse click on a hyperlink, for example, the User Interface module determines

and resolves the URL associated with that link, and passes it to the Request Generation

module.

At this point, the Request Generation module begins to construct the request. The first portion of

the request that needs to be created is the request line, which contains a ‘method’ (representing

one of several supported request methods), the ‘/path-to-resource’ (representing the path

portion of the requested URL), and the ‘version-number’ (specifying the version of HTTP

associated with the request).

Let’s examine these in reverse order:

The ‘version-number’ should be either HTTP/1.1 or HTTP/1.0. A modern up-to-date client

program should always seek to use the latest version of its chosen transmission protocol,

unless the recipient of the request is not sophisticated enough to make use of that latest

version. Thus, at the present time, a browser should seek to communicate with a server using

HTTP/1.1, and should only ‘fall back’ to HTTP/1.0 if the server with which it is communicating

does not support HTTP/1.1.

The ‘path-to-resource’ portion is a little more complicated, and is in fact dependent on which

version of HTTP is employed in the request. You may remember that this portion of the request

line is supposed to contain the “path” portion of the URL. This is the part of the URL following

the host portion of the URL (i.e. "http://hostname"), starting with the "/".

The situation is complicated when the browser connects to a proxy server to send a request,

rather than connecting directly to the target server. Proxies need to know where to forward the

request. If only the path-to-resource portion is included in the request line, a proxy would have

no way of knowing the intended destination of the request. HTTP/1.0 requires the inclusion of

the entire URL for requests directed at proxy servers, but forbids the inclusion of the entire URL

for requests that get sent directly to their target servers. This is because HTTP/1.0 servers do

not understand requests where the full URL is specified in the request line.

In contrast, HTTP/1.0 proxies expect that incoming requests contain full URLs. When HTTP/1.0

proxies reconstruct requests to be sent directly to their target servers, they remove the server

portion of the request URL. When requests must pass through additional proxies, this

reconstruction is not performed, and the requests remain unchanged.

HTTP/1.1 is more flexible; it makes the inclusion of the entire URL on the request line

acceptable in all situations, irrespective of whether a proxy is involved. However, to facilitate this

flexibility, HTTP/1.1 requires that submitted requests all include a "Host" header, specifying the

IP address or name of the target server. This header was originally introduced to support virtual

hosting, a feature that allows a web server to service more than one domain. This means that a

single Web server program could be running on a server machine, accepting requests

associated with many different domains. However, this header also provides sufficient

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يتطلب HTTP / 1.0 تضمين عنوان URL بالكامل للطلبات الموجهة للخوادم الوكيلة ، ولكنه يحظر تضمين عنوان URL بالكامل للطلبات التي يتم إرسالها مباشرة إلى الخوادم المستهدفة.

Bushra
Typewriter
مهممممم

Bushra
Highlight

Bushra
Typewriter
وذلك لأن خوادم HTTP / 1.0 لا تفهم الطلبات حيث يتم تحديد عنوان URL الكامل في سطر الطلب.

Bushra
Highlight

Bushra
Typewriter
في المقابل ، يتوقع وكلاء HTTP / 1.0 أن تحتوي الطلبات الواردة على عناوين URL كاملة.

Bushra
Highlight

Bushra
Typewriter
HTTP / 1.1 أكثر مرونة

Bushra
Highlight

Bushra
Typewriter
يجعل إدراج عنوان URL بالكامل في سطر الطلب مقبولاً في جميع المواقف ، بغض النظر عما إذا كان الوكيل متضمنًا أم لا

Bushra
Typewriter
تتطلب أن تتضمن جميع الطلبات المرسلة رأس "مضيف" ،

Bushra
Highlight

11

information to proxies so that they can properly forward requests to other servers/proxies.

Unlike HTTP/1.0 proxies, HTTP/1.1 proxies do not need to perform any transformation of these

requests.

The ‘method’ portion of the request line is dependent on which request method is specified,

implicitly or explicitly. When a hyperlink (textual or image) is selected and clicked, the GET

method is implicitly selected. In the case of HTML forms, a particular request method may be

specified in the <FORM> tag:

<FORM ACTION ="http://www.somewhere.com/update.cgi" METHOD ="POST"> ... </FORM>

As mentioned in the chapter on the HTTP protocol, the GET method represents the simplest

format for HTTP requests: a request line, followed by headers, and no body. Other request

methods such as POST and PUT make use of a request body that follows the request line,

headers, and blank line. (The blank line serves as a separator delimiting the headers from the

body.) This request body may contain parameters associated with an HTML form, a file to be

uploaded, or a combination of both. In any case, we are still working on the construction of the

request line.

The ‘method’ portion will be set to "GET" by default: for textual or image-based hyperlinks that

are followed, and for forms that do not explicitly specify a METHOD. If a form does explicitly

specify a METHOD, that method will be used instead.

Constructing the headers Next, we come to the headers. There are a number of headers that a

browser should include in the request:

Host: www.neurozen.com

This header was introduced to support virtual hosting, a feature that allows a web server to

service more than one domain. This means that a single Web server program could be running

on a server machine, accepting requests associated with many different domains. Without this

header, the Web server program could not tell which of its many domains the target of the

request was. In addition, this header provides information to proxies to facilitate proper routing

of requests.

User-Agent: Mozilla/4.75 [en] (WinNT; U)

Identifies the software (e.g. a web browser) responsible for making the request. Your browser

(or for that matter any Web client) should provide this information to identify itself to servers.

The conventions are to produce a header containing the name of the product, the version

number, the language this particular copy of the software uses, and the platform it runs on:

Product/version. number [lang] (Platform)

Referer: http://www.cs.rutgers.edu/∼shklar/index.html

If this request was instantiated because a user selected a link found on a web page, this header

should contain the URL of that referring page. Your Web client should keep track of the current

URL it is displaying, and it should be sure to include that URL in a Referer header whenever a

link on the current page is selected.

Bushra
Highlight

Bushra
Typewriter
بخلاف بروكسيات HTTP / 1.0 ، لا تحتاج وكلاء HTTP / 1.1 إلى إجراء أي تحويل لهذه الطلبات

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
إذا تم إنشاء هذا الطلب لأن المستخدم حدد ارتباطًا موجودًا على صفحة ويب ، فيجب أن يحتوي هذا العنوان على عنوان URL لصفحة الإحالة.

12

Date: Sun, 11 Feb 2001 22:28:31 GMT

This header specifies the time and date that this message was created. All request and

response messages should include this header.

Accept: text/html, text/plain ,type/subtype, ...

Accept- Charset: ISO-8859-1,character −set −identifier, ...

Accept-Language: en, language −identifier, ...

Accept-Encoding: compress, gzip,...

These headers list the MIME types, character sets, languages, and encoding schemes that your

client will ‘accept’ in a response from the server. If your client needs to limit responses to a finite

set, then these should be included in these headers. Your client’s preferences with respect to

these items can be ranked by adding relative values in the form of q=qvalue parameters, where

qvalue is a digit.

Content-Type:mime-type/mime-subtype

Content-Length: xxx

These entity headers provide information about the message body. For POST and PUT

requests, the server needs to know the MIME type of the content found in the body of the

request, as well as the length of the body.

Cookie: name=value

This request header contains cookie information that the browser has found in responses

previously received from Web servers. This information needs to be sent back to those same

servers in subsequent requests, maintaining the ‘state’ of a browser session by providing a

name-value combination that uniquely identifies a particular user. Interaction with the State

Maintenance module will determine whether these headers need to be included in requests, and

if so what their values should be. Note that a request will contain multiple Cookie headers if

there is more than one cookie that should be included in the request.

Authorization: SCHEME encoded-user id: password

This request header provides authorization credentials to the server in response to an

authentication challenge received in an earlier response. The scheme (usually ‘basic’) is

followed by a string composed of the user ID and password (separated by a colon), encoded in

the base64 format. Interaction with the Authorization module will determine what the content of

this header should be.

Constructing the request body This step of the request construction process applies only for

methods like POST and PUT that attach a message body to a request. The simplest example is

that of including form parameters in the message body when using the POST method. They

must be URL-encoded to enable proper parsing by the server, and thus the Content-Type

header in the request must be set to application/x-www-form-urlencoded. There are more

complex uses for the request body. File uploads can be performed through forms employing the

POST method (using multipart MIME types), or (with the proper server security configuration)

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

13

web resources can be modified or created directly using the PUT method. With the PUT

method, the ContentType of the request should be set to the MIME type of the content that is

being uploaded. With the POST method, the Content-Type of the request should be set to

multipart/form-data, while the Content-Type of the individual parts should be set to the MIME

type of those parts. This Content-Type header requires the "boundary" parameter, which

specifies a string of text that separates discrete pieces of content found in the body:

... Content-Type: multipart/ multipart subtype ; boundary=" random-string "

-random-string

Content-Type: type/subtype of part 1

Content-Transfer-Encoding: encoding scheme for part 1

content of part 1

-random-string

Content-Type: type/subtype of part 2

Content-Transfer-Encoding: encoding scheme for part 2

content of part 2

Note that each part specifies its own Content-Type, and its own Content-Transfer-Encoding.

This means that one part can be textual, with no encoding specified, while another part can be

binary (e.g. an image), encoded in Base64 format, as in the following example:

... Content-Type: multipart/form-data; boundary="gc0p4Jq0M2Yt08jU534c0p"

--gc0p4Jq0M2Yt08jU534c0p

Content-Type: application/x-www-form-urlencoded

&filename= ... ¶m =value

--gc0p4Jq0M2Yt08jU534c0p

Content-Type: image/gif

Content-Transfer-Encoding: base64

FsZCBoYWQgYSBmYXJtCkUgSST2xkIE1hY0Rvbm GlzIGZhcm0gaGUgaGFkBFIEkgTwpBbmQgb24ga

IHKRSBJIEUgSSBPCldpdGggYSNvbWUgZHVja3M BxdWjayBoZXJlLApFjayBxdWFhIHF1YWNrIHF1

XJlLApldmVyeSB3aGYWNrIHRoZVyZSBhIHF1YW NrIHF1YWNrCEkgTwokUgSSBFI=

Transmission of the request Once the request has been fully constructed, it is passed to the

Networking module, which transmits the request.

This module must first determine the target of the request. Normally, this can be obtained by

parsing the URL associated with the request. However, if the browser is configured to employ a

proxy server, the target of the request would be that proxy server. Thus, the Configuration

Bushra
Highlight

14

module must be queried to determine the actual target for the request. Once this is done, a

socket is opened to the appropriate machine.

HTTP responses

In the request/response paradigm, the transmission of a request anticipates the receipt of some

sort of a response. Hence, browsers and other Web clients must be prepared to process HTTP

responses. This task is the responsibility of the Response Processing module. As we know,

HTTP responses have the following format:

HTTP/version-number status-code message

Header-Name-1: value Header-Name-2: value

[response body]

An HTTP response message consists of a status line (containing the HTTP version, a three-digit

status code, and a brief human-readable explanation of the status code), a series of headers

(again, one per line), a blank line, and finally the body of the response. The following is an

example of the HTTP response message that a server would send back to the browser when it

is able to satisfy the incoming request:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 1234 ...

<HTML>

 <HEAD> <TITLE>...</TITLE>

 </HEAD>

 <BODY BGCOLOR="#ffffff">

 <H2 ALIGN="center">...</H2> ... </H2>

 </BODY>

</HTML>

In this case, we have a successful response: the server was able to satisfy the client’s request

and sent back the requested data. Now, of course, the requesting client must know what to do

with this data. When the Networking module receives a response, it passes it to the Response

Processing module.

First, this module must interpret the status code and header information found in the response

to determine what action it should take. It begins by examining the status code found in the first

line of the response (the status line). In the lecture covering the HTTP protocol, we delineated

the different classes of status codes that might be sent by a Web server:

 • informational status codes (1xx),

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

15

 • successful response status codes (2xx),

• redirection status codes (3xx), • client request error status codes (4xx),

and • server error status codes (5xx).

Obviously, different actions need to be taken depending on which status code is contained in

the response. Since the successful response represents the simplest and most common case,

we will begin with the status code "200".

Processing successful responses The status code "200" represents a successful response, as

indicated by its associated message "OK". This status code indicates that the browser or client

should take the associated content and render it in accordance with the specifications included

in the headers:

Content-Transfer-Encoding: chunked

Content-Encoding: compress | gzip

The presence of these headers indicates that the response content has been encoded and that,

prior to doing anything with this content, it must be de-coded.

Content-Type:mime-type/mime-subtype

This header specifies the MIME type of the message body’s content. Browsers are likely to have

individualized rendering modules for different MIME types. For example, text/html would cause

the HTML rendering module to be invoked, text/plain would make use of the plain text rendering

module, and image/gif would employ the image rendering module. Browsers provide built-in

support for a limited number of MIME types, while deferring processing of other MIME types to

plug-ins and helper applications.

Content-Length: xxx

This optional header provides the length of the message body in bytes. Although it is optional,

when it is provided a client may use it to impart information about the progress of a request.

When the header is included, the browser can display not only the amount of data downloaded,

but it can also display that amount as a percentage of the total size of the message body.

Set-Cookie: name=value ; domain= domain.name ; path= path-within-server ; [secure]

If the server wishes to establish a persistent mechanism for maintaining session state with the

user’s browser, it includes this header along with identifying information. The browser is

responsible for sending back this information in any requests it makes for resources within the

same domain and path, using Cookie headers. The State Maintenance module stores cookie

information found in the response’s Set-Cookie headers, so that the browser can later retrieve

that information for Cookie headers it needs to include in generated requests. Note that a

response can contain multiple Set-Cookie headers.

Cache-Control: private | no-cache |... Pragma: no-cache

Expires: Sun, 11 Feb 2001 22:28:31 GMT

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

16

These headers influence caching behavior. Depending on their presence or absence (and on

the values they contain), the Caching Support module will decide whether the content should be

cached, and if so, for how long (e.g. for a specified period of time or only for the duration of this

browser session).

Once the content of a successful response has been decoded and cached, the cookie

information contained in the response has been stored, and the content type has been

determined, then the response content is passed on to the Content Interpretation module.

This module delegates processing to an appropriate sub-module, based on the content type.

For instance, images (Content-Type: image/*) are processed by code devoted to rendering

images. HTML content(Content-Type: text/html) is passed to HTML rendering functions, which

would in turn pass off processing to other functions. For instance, JavaScript—contained within

<SCRIPT> block tags or requested via references to URLs in <SCRIPTSRC=...>tags—must be

interpreted and processed appropriately. In addition, style sheet information embedded in the

page must also be processed.

Only after all of this processing is complete is the resulting page passed to the User Interface

module to be displayed in the browser window.

There are other status codes that fit into the ‘successful response’ category (2xx) including: "201

Created": a new resource was created in response to the request, and the Location header

contains the URL of the new resource. "202 Accepted": the request was accepted, but may or

may not be processed by the server.

"204 No Content": nobody was included with the response, so there is no content to present.

This tells the browser not to refresh or update its current presentation as a result of processing

this request.

"205 Reset Content": this is usually a response to a form processed for data entry. It indicates

that the server has processed the request, and that the browser should retain the current

presentation, but that it should clear all form fields. Although these status codes are used less

often than the popular 200 OK, browsers should be capable of interpreting and processing them

appropriately.

Processing of responses with other status codes Aside from the successful status code of 200,

the most common status codes are the ones associated with redirection (3xx) and client request

errors (4xx).

Client request errors are usually relatively simple to process: either the browser has somehow

provided an invalid request (400 Bad Request), or the URL the browser requested couldn’t be

found on the server (404 Not Found). In either of these cases, the browser simply presents a

message indicating this state of affairs to the user.

Authentication challenges that are caused by the browser attempting to access protected

resources (e.g. 401 Not Authorized) are also classified as ‘client error’ conditions. Some Web

servers may be configured to provide custom HTML presentations when one of these conditions

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

17

occurs. In those situations, the browser should simply render the HTML page included in the

response body:

HTTP/1.1 404 Not Found

Content-Type: text/html

<HTML>

<HEAD> <TITLE>Whoops!</TITLE> </HEAD>

<BODY BGCOLOR="#ffffff">

<h3>Look What You’ve Done!</h3> You’ve broken the internet! <P> (Just kidding, you

simply requested an invalid address on this site.)

</BODY>

</HTML>

Redirection status codes are also relatively simple to process. They come in two varieties: 301

Moved Permanently and 302 Moved Temporarily. The processing for each of these is similar.

For responses associated with each of these status codes, there will be a Location: header

present. The browser needs to submit a further request to the URL specified in this header to

perform the desired redirection. Some Web servers may be configured to include custom HTML

bodies when one of these conditions arises. This is for the benefit of older browsers that do not

support automatic redirection and default to rendering the body when they don’t recognize the

status code. Browsers that support redirection can ignore this content and simply perform the

redirection as specified in the header:

HTTP/1.1 301 Moved Permanently

Location: http://www.somewhere-else.com/davepage.html

Content-Type: text/html

<HTML>

<HEAD> <TITLE>Dave’s Not Here, Man!</TITLE> </HEAD>

<BODY BGCOLOR="#ffffff">

<h3>Dave’s Not Here, Man!</h3> Dave is no longer at this URL. If you want to visit

him, click here

</BODY>

</HTML>

This response should cause the browser to generate the following request:

GET /davepage.html HTTP/1.1

Host: www.somewhere-else.com

18

The difference between the 301 and 302 status codes is the notion of ‘moved permanently’

versus ‘moved temporarily’. The 301 status code informs the browser that the data at the

requested URL is now permanently located at the new URL, and thus the browser should

always automatically go to the new location. In order to make this happen, browsers need to

provide a persistence mechanism for storing relocation URLs. In fact, the mechanism used for

storing cookies, authorization credentials, and cached content can be employed for this purpose

as well. In the future, whenever a browser encounters a request for a relocated URL, it would

automatically build a request asking for the new URL.

	These entity headers provide information about the message body.
	وصلت هني

