
01-HTTP (HyperText Transfer Protocol)

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

collaborative, hypermedia information systems. This is the foundation for data communication

for the World Wide Web (i.e. internet) since 1990. HTTP is a generic and stateless protocol

which can be used for other purposes as well using extensions of its request methods, error

codes, and headers.

Basically, HTTP is a TCP/IP based communication protocol, that is used to deliver data (HTML

files, image files, query results, etc.) on the World Wide Web. The default port is TCP 80, but

other ports can be used as well. It provides a standardized way for computers to communicate

with each other. HTTP specification specifies how clients' request data will be constructed and

sent to the server, and how the servers respond to these requests.

Building Blocks of the Web

There were three basic components devised by Tim Berners-Lee comprising the essence of

Web technology:

1. A markup language for formatting hypertext documents.

2. A uniform notation scheme for addressing accessible resources over the network.

3. A protocol for transporting messages over the network.

The markup language that allowed cross-referencing of documents via hyperlinks was the

HyperTextMarkupLanguage (HTML).

The uniform notation scheme is called the Uniform Resource Identifier (URI). it is most often

referred to as the Uniform Resource Locator (URL).

HTTP is a core foundation of the World Wide Web. It was designed for transporting specialized

messages over the network. Understanding of HTTP is just as critical in maintaining complex

applications. Understanding the HTTP messages passed between servers, proxies and

browsers leads to deeper insights into the nature of underlying problems.

The Uniform Resource Locator (URL)

Tim Berners-Lee knew that one piece of the Web puzzle would be a notation scheme for

referencing accessible resources anywhere on the Internet. He devised this notational scheme

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

so that it would be flexible, so that it would be extensible, and so that it would support other

protocols besides HTTP. This notational scheme is known as the URL or Uniform Resource

Locator

Here is the generalized notation associated with URLs:

scheme://host[:port#]/path/.../[;url-params][?query-string][#anchor]

Let us break a URL down into its component parts:

• scheme—this portion of the URL designates the underlying protocol to be used (e.g. ‘http’ or

‘ftp’). This is the portion of the URL preceding the colon and two forward slashes.

• host—this is either the name of the IP address for the web server being accessed. This is

usually the part of the URL immediately following the colon and two forward slashes.

• port#—this is an optional portion of the URL designating the port number that the target web

server listens to. (The default port number for HTTP servers is 80, but some configurations are

set up to use an alternate port number. When they do, that number must be specified in the

URL.) The port number, if it appears, is found right after a colon that immediately follows the

server name or address.

• path—logically speaking, this is the file system path from the ‘root’ directory of the server to

the desired document. The path immediately follows the server and port number portions of the

URL, and by definition includes that first forward slash.

• url-params—this one rarely used portion of the URL includes optional ‘URL parameters’. It is

now used somewhat more frequently, for session identifiers in web servers. If present, it

follows a semi-colon immediately after the path information.

• query-string—this optional portion of the URL contains other dynamic parameters associated

with the request. Usually, these parameters are produced as the result of user-entered

variables in HTML forms. If present, the query string follows a question mark in the URL. Equal

signs (=) separate the parameters from their values, and ampersands (&) mark the boundaries

between parameter value pairs.

• anchor—this optional portion of the URL is a reference to a positional marker within the

requested document, like a bookmark. If present, it follows a hash mark or pound sign (‘#’).

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يعيّن هذا الجزء من عنوان URL البروتوكول الأساسي الذي سيتم استخدامه

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يتم استخدامه الآن بشكل متكرر إلى حد ما ، لمعرفات الجلسات في خوادم الويب. إذا كان موجودًا ، فإنه يتبع فاصلة منقوطة مباشرة بعد معلومات المسار.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

The breakout of a sample URL into components is illustrated below:

http://www.mywebsite.com/sj/test;id=8079?name=sviergn&x=true#stuff

SCHEME = http HOST = www.mywebsite.com PATH = /sj/test URL PARAMS = id=8079

QUERY STRING = name=sviergn&x=true ANCHOR = stuff

Note that the URL notation we are describing here applies to most protocols (e.g. http, https,

and ftp).

HTTP Basic Features

There are three basic features that make HTTP a simple but powerful protocol:

 HTTP is connectionless: The HTTP client, i.e., a browser initiates an HTTP request

and after a request is made, the client disconnects from the server and waits for a

response. The server processes the request and re-establishes the connection with the

client to send a response back.

 HTTP is media independent: It means, any type of data can be sent by HTTP as long

as both the client and the server know how to handle the data content. It is required for

the client as well as the server to specify the content type using appropriate MIME-type.

 HTTP is stateless: As mentioned above, HTTP is connectionless and it is a direct

result of HTTP being a stateless protocol. The server and client are aware of each other

only during a current request. Afterwards, both of them forget about each other. Due to

this nature of the protocol, neither the client nor the browser can retain information

between different requests across the web pages.

Multimedia Internet Mail Extensions (MIME)

MIME Originally, e-mail systems transmitted messages in the form of standard ASCII text. If a

user wanted to send a file in a non-text or ‘binary’ format (e.g. an image or sound file), it had to

be encoded before it could be placed into the body of the message. The sender had to

communicate the nature of the binary data directly to the receiver.

Multimedia Internet Mail Extensions (MIME) provided uniform mechanisms for including

encoded attachments within a multipart e-mail message. MIME supports the definition of

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
MIME في الأصل ، كانت أنظمة البريد الإلكتروني ترسل رسائل في شكل نص ASCII قياسي

boundaries separating the text portion of a message (the ‘body’) from its attachments, as well

as the designation of attachment encoding methods.

MIME also supports the notion of content typing for attachments (and for the body of a

message as well).

MIME-types are standard naming conventions for defining what type of data is contained in an

attachment. A MIME-type is constructed as a combination of a top-level data type and a

subtype. There is a fixed set of top-level data types, including ‘text’, ‘image’, ‘audio’, ‘video’,

and ‘application’. The subtypes describe the specific type of data, e.g. ‘text/html’, ‘text/plain’,

‘image/jpeg’, ‘audio/mp3’.

The structure of HTTP messages

HTTP messages (both requests and responses) have a structure similar to e-mail messages;

they consist of a block of lines comprising the message headers, followed by a blank line,

followed by a message body. The structure of HTTP messages, however, is more

sophisticated than the structure of e-mail messages.

Let us start with a very simple example: loading a static web page residing on a web server. A

user may manually type a URL into her browser, she may click on a hyperlink found within the

page she is viewing with the browser, or she may select a bookmarked page to visit. In each of

these cases, the desire to visit a particular URL is translated by the browser into an HTTP

request. An HTTP request message has the following structure:

METHOD /path-to-resource HTTP/version-number

Header-Name-1: value

Header-Name-2: value

[optional request body]

Every request starts with the special request line, which contains a number of fields:

1. The ‘method’ represents one of several supported request methods, chief among them

‘GET’ and ‘POST’.

2. The ‘/path-to-resource’ represents the path portion of the requested URL.

3. The ‘version-number’ specifies the version of HTTP used by the client.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

After the first line we see a list of HTTP headers, followed by a blank line, often called a

<CR><LF> (for ‘carriage return and line feed’). The blank line separates the request headers

from the body of the request. The blank line is followed (optionally) by a body, which is in turn

followed by another blank line indicating the end of the request message.

Here is a simplified version of the HTTP request message that would be transmitted to the web

server at www.mywebsite.com:

GET /sj/index.html HTTP/1.1

Host: www.mywebsite.com

Note that the request message ends with a blank line. In the case of a GET request, there is no

body, so the request simply ends with this blank line. Also, note the presence of a Host header.

The server, upon receiving this request, attempts to generate a response message. An HTTP

response message has the following structure:

HTTP/version-number status-code message

Header-Name-1: value

Header-Name-2: value

[response body]

The first line of an HTTP response message is the status line. This line contains:

1. The version of HTTP being used.

2. Three-digit status code.

3. Brief human-readable explanation of the status code.

This is a simplified version of the HTTP response message that the server would send back to

the browser, assuming that the requested file exists and is accessible to the requestor:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 9934 ...

<HTML>

 <HEAD>

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
شرح موجز مقروء بشري لرمز الحالة

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

 <TITLE>SJs Web Page</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff">

<H2 ALIGN="center">Welcome to Sviergn Jiernsen’s Home Page</H2>

... </H2>

</BODY>

 </HTML>

Request methods

There are varieties of request methods specified in the HTTP protocol. The most basic ones

defined in HTTP/1.1 are GET, HEAD, and POST. In addition, there are the less commonly

used PUT, DELETE, TRACE, OPTIONS and CONNECT.

GET

The simplest of the request methods is GET. When you enter a URL in your browser, or click

on a hyperlink to visit another page, the browser uses the GET method when making the

request to the web server. GET requests date back to the very first versions of HTTP. A GET

request does not have a body and, until the version 1.1, was not required to have headers.

(HTTP/1.1 requires that the Host header should be present in every request in order to support

virtual hosting)

The following example, we visited a URL, http://www.mywebsite.com/sj/index.html, using the

GET method. Let’s take a look at the request that gets submitted by an HTTP/1.1 browser

when you fill out a simple HTML form to request a stock quote:

<HTML>

<HEAD>

 <TITLE>Simple Form</TITLE>

</HEAD>

 <BODY>

<H2>Simple Form</H2>

<FORM ACTION="http://finance.yahoo.com/q" METHOD="get"> Ticker:

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

<INPUT SIZE="25" NAME="s">

<INPUT TYPE="submit" VALUE="Get Quote">

</FORM>

<BODY>

</HTML>

If we enter ‘YAHOO’ in the form above, then the browser constructs a URL comprised of the

‘ACTION’ field from the form followed by a query string containing all of the form’s input

parameters and the values provided for them. The boundary separating the URL from the

query string is a question mark. Thus, the URL constructed by the browser is

http://www.finance.yahoo.com/q?s=YAHOO and the submitted request looks as follows:

GET /q?s=YAHOO HTTP/1.1

Host: finance.yahoo.com

User-Agent: Mozilla/4.75 [en] (WinNT; U)

The response that comes back from the server looks something like this:

HTTP/1.0 200 OK

Date: Sat, 03 Feb 2001 22:48:35 GMT

Connection: close

Content-Type: text/html

Set-Cookie: B=9ql5kgct7p2m3&b=2;expires=Thu,15 Apr 2010 20:00:00 GMT;

 path=/; domain = . yahoo . com

<HTML>

<HEAD>

<TITLE>Yahoo! Finance - YHOO</TITLE>

</HEAD>

<BODY> ... </BODY>

</HTML>

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

POST

A fundamental difference between GET and POST requests is that POST requests have a

body: content that follows the block of headers, with a blank line separating the headers from

the body. Going back to the previous example, let’s change the request method to POST and

notice that the browser now puts form parameters into the body of the message, rather than

appending parameters to the URL as part of a query string:

POST /q HTTP/1.1

Host: finance.yahoo.com

User-Agent: Mozilla/4.75 [en] (WinNT; U)

Content-Type: application/x-www-form-urlencoded

Content-Length: 6

s=YAHOO

Note that the URL constructed by the browser does not contain the form parameters in the

query string. Instead, these parameters are included after the headers as part of the message

body:

HTTP/1.0 200 OK

Date: Sat, 03 Feb 2001 22:48:35 GMT

Connection: close

Content-Type: text/html

Set-Cookie: B=9ql5kgct7p2m3&b=2;expires=Thu,15 Apr 2010 20:00:00 GMT; path=/;
domain=.yahoo.com

<HTML>

 <HEAD>

<TITLE>Yahoo! Finance - YHOO</TITLE>

</HEAD>

 <BODY> ... </BODY>

</HTML>

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Note that the response that arrives from finance.yahoo.com happens to be exactly the same as

in the previous example using the GET method, but only because designers of the server

application decided to support both request methods in the same way.

HEAD

Requests that use the HEAD method operate similarly to requests that use the GET method,

except that the server sends back only headers in the response. This means the body of the

request is not transmitted, and only the response metadata found in the headers is available to

the client. This response metadata, however, may be sufficient to enable the client to make

decisions about further processing, and may possibly reduce the overhead associated with

requests that return the actual content in the message body.

If we were to go back to the sample form and change the request method to HEAD, we would

notice that the request does not change (except for replacing the word ‘GET’ with the word

‘HEAD’, of course), and the response contains the same headers as before but no body.

Status codes

The first line of a response is the status line, consisting of the protocol and its version number,

followed by a three-digit status code and a brief explanation of that status code. The status

code tells an HTTP client (browser or proxy) either that the response was generated as

expected, or that the client needs to perform a specific action (that may be further

parameterized via information in the headers). The explanation portion of the line is for human

consumption; changing or omitting it will not cause a properly designed HTTP client to change

its actions. Status codes are grouped into categories. HTTP Version 1.1 defines five categories

of response messages:

• 1xx—Status codes that start with ‘1’ are classified as informational.

• 2xx—Status codes that start with ‘2’ indicate successful responses.

• 3xx—Status codes that start with ‘3’ are for purposes of redirection.

• 4xx—Status codes that start with ‘4’ represent client request errors.

• 5xx—Status codes that start with ‘5’ represent server errors.

Informational status codes (1xx)

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
ومع ذلك ، قد تكون البيانات الوصفية للاستجابة كافية لتمكين العميل من اتخاذ قرارات بشأن مزيد من المعالجة ، وقد تقلل من العبء المرتبط بالطلبات التي تعيد المحتوى الفعلي في نص الرسالة

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
تصنف على أنها إعلامية.

Bushra
Highlight

Bushra
Typewriter
تشير إلى الاستجابات الناجحة.

Bushra
Highlight

Bushra
Typewriter
هي لأغراض إعادة التوجيه

Bushra
Highlight

Bushra
Typewriter
تمثل أخطاء طلب العميل

Bushra
Highlight

Bushra
Typewriter
تمثل أخطاء الخادم

Bushra
Highlight

These status codes serve solely informational purposes. They do not denote success or failure

of a request, but rather impart information about how a request can be processed further. For

example, a status code of “100” is used to tell the client that it may continue with a partially

submitted request. Clients can specify a partially submitted request by including an ‘Expect’

header in the request message. A server can examine requests containing an ‘Expect’ header,

determine whether or not it is capable of satisfying the request, and send an appropriate

response. If the server is capable of satisfying the request, the response will contain a status

code of ‘100’:

HTTP/1.1 100 Continue ...

If it cannot satisfy the request, it will send a response with a status code indicating a client

request error, i.e. ‘417’:

HTTP/1.1 417 Expectation Failed ...

Successful response status codes (2xx)

The most common successful response status code is ‘200’, which indicates that the request

was successfully completed and that the requested resource is being sent back to the client:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 9934 ...

<HTML>

<HEAD>

<TITLE>SJ’s Web Page</TITLE>

</HEAD>

<BODY BGCOLOR="#ffffff">

<H2 ALIGN="center">Welcome to Sviergn Jiernsen’s Home Page</H2> ... </H2>

</BODY>

 </HTML>

Another example is ‘201’, which indicates that the request was satisfied and that a new

resource was created on the server.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
مما يشير إلى أن الطلب قد اكتمل بنجاح وأن المورد المطلوب يتم إرساله مرة أخرى إلى العميل:

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
مما يشير إلى تلبية الطلب وأنه تم إنشاء مورد جديد على الخادم

Redirection status codes (3xx)

Status codes of the form ‘3xx’ indicate that additional actions are required to satisfy the original

request. Normally this involves a redirection: the client is instructed to ‘redirect’ the request to

another URL.

For example, ‘301’ and ‘302’ both instruct the client to look for the originally requested resource

at the new location specified in the ‘Location’ header of the response. The difference between

the two is that ‘301’ tells the client that the resource has ‘Moved Permanently’, and that it

should always look for that resource at the new location. ‘302’ tells the client that the resource

has ‘Moved Temporarily’, and to consider this relocation a one-time deal, just for purposes of

this request.

In either case, the client should, immediately upon receiving a 301 or 302 response, construct

and transmit a new request ‘redirected’ at the new location. Redirections happen all the time,

often unbeknownst to the user. Browsers are designed to respond silently to redirection status

codes, so that users never see redirection ‘happen’.

A perfect example of such silent redirection occurs when a user enters a URL specifying a

directory, but leaving off the terminating slash. To visit Leon’s web site at Rutgers University,

you could enter http://www.cs.rutgers. edu/∼shklar in your browser. This would result in the

following HTTP request:

GET /∼shklar HTTP/1.1

Host: www.cs.rutgers.edu

But "∼shklar" is actually a directory on the Rutgers web server, not a deliverable file. Web

servers are designed to treat a URL ending in a slash as a request for a directory. Such

requests may, depending on server configuration, return either a file with a default name (if

present), e.g. index.html, or a listing of the directory’s contents. In either case, the web server

must first redirect the request, from http://www.cs.rutgers.edu/∼shklar to

http://www.cs.rutgers.edu/∼ shklar/, to properly present it:

HTTP/1.1 301 Moved Permanently

Location: http://www.cs.rutgers.edu/∼shklar/

Content-Type: text/html ...

<html>

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
الإشارة إلى أن الإجراءات الإضافية مطلوبة لتلبية الطلب الأصلي.

Bushra
Highlight

Bushra
Typewriter
عادةً ما ينطوي هذا على إعادة توجيه: يُطلب من العميل "إعادة توجيه" الطلب إلى
URL آخر.

Bushra
Highlight

Bushra
Typewriter
كلاهما يوجه العميل للبحث عن المورد المطلوب أصلاً في الموقع الجديد المحدد في عنوان "الموقع" للاستجابة

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يخبر العميل أن المورد "تم نقله بشكل دائم"

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
في كلتا الحالتين ، يجب على العميل فور تلقي رد 301 أو 302 ، إنشاء وإرسال طلب جديد "تمت إعادة توجيهه" إلى الموقع الجديد. تحدث عمليات إعادة التوجيه طوال الوقت ، وغالبًا ما تكون غير معروفة للمستخدم. تم تصميم المتصفحات للاستجابة بصمت لرموز حالة إعادة التوجيه ، بحيث لا يرى المستخدمون حدوث إعادة التوجيه مطلقًا.

Bushra
Highlight

 <head>

<title>301 Moved Permanently</title>

</head>

<body>

<h1>301 Moved Permanently</h1>

The document has moved here.

</body>

 </html>

Today’s sophisticated browsers are designed to react to ‘301’ by updating an internal

relocation table, so that in the future they can substitute the new address prior to submitting the

request, and thus avoid the relocation response. To support older browsers that do not support

automatic relocation, web servers still include a message body that explicitly includes a link to

the new location. This affords the user an opportunity to manually jump to the new location.

Client request error status codes (4xx)

Status codes that start with ‘4’ indicate a problem with the client request (e.g. ‘400 Bad

Request’), an authorization challenge (e.g. ‘401 Not Authorized’), or the server’s inability to find

the requested resource (e.g. ‘404 Not Found’).

Although ‘400’, ‘401’, and ‘404’ are the most common in this category, some less common

status codes are quite interesting. We have already seen (in the section on ‘Informational

Status Codes’) an example of the use of ‘417 Expectation Failed’. In another example, the

client might use the ‘If-Unmodified-Since’ header to request a resource only if it has not

changed since a specific date:

GET/∼shklar/HTTP/1.1

Host: www.cs.rutgers.edu

If-Unmodified-Since: Fri, 11 Feb 2000 22:28:00 GMT

Since this resource did change, the server sends back the ‘412 Precondition Failed’ response:

HTTP/1.1 412 Precondition Failed

Date: Sun, 11 Feb 2001 22:28:31 GMT

Server: Apache/1.2.5

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Server error status codes (5xx)

Finally, status codes that start with ‘5’ indicate a server problem that prevents it from satisfying

an otherwise valid request (e.g. ‘500 Internal Server Error’ or ‘501 Not Implemented’).

BETTER INFORMATION THROUGH HEADERS

As we already know, HTTP headers are a form of message metadata. Enlightened use of

headers makes it possible to:

1. Construct sophisticated applications that establish and maintain sessions.

2. Set caching policies and control authentication.

3. Implement business logic.

The HTTP protocol specification makes a clear distinction between general headers, request

headers, response headers, and entity headers. General headers apply to both request and

response messages, but do not describe the body of the message. Examples of general

headers include:

• Date: Sun, 11 Feb 2001 22:28:31 GMT This header specifies the time and date that this

message was created.

• Connection: Close This header indicates whether or not the client or server that generated

the message intends to keep the connection open.

• Warning: Danger, Will Robinson! This header stores text for human consumption, something

that would be useful when tracing a problem.

Request headers allow clients to pass additional information about themselves and about the

request. For example:

• User-Agent: Mozilla/4.75 [en] (WinNT; U) Identifies the software (e.g. a web browser)

responsible for making the request.

• Host: www.neurozen.com This header was introduced to support virtual hosting, a feature

that allows a web server to service more than one domain.

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
تشير إلى مشكلة في الخادم تمنعه من تلبية طلب صالح بخلاف ذلك

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
يتيح الاستخدام المستنير للرؤوس إمكانية:

Bushra
Highlight

Bushra
Typewriter
إنشاء تطبيقات متطورة تنشئ الجلسات وتحافظ عليها

Bushra
Highlight

Bushra
Typewriter
تعيين سياسات التخزين المؤقت والتحكم في المصادقة.

Bushra
Highlight

Bushra
Typewriter
تنفيذ منطق الأعمال.

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
1

Bushra
Typewriter
2

Bushra
Typewriter
1

Bushra
Typewriter
2

Bushra
Typewriter
3

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

 • Referer: http://www.cs.rutgers.edu/∼shklar/index.html This header provides the server with

context information about the request. If the request came about because a user clicked on a

link found on a web page, this header contains the URL of that referring page.

 • Authorization: Basic [encoded-credentials] This header is transmitted with requests for

resources that are restricted only to authorized users. Browsers will include this header after

being notified of an authorization challenge via a response with a ‘401’ status code. They

consequently prompt users for their credentials (i.e. user id and password). They will continue

to supply those credentials via this header in all further requests during the current browser

session that access resources within the same authorization realm.

Response headers help the server to pass additional information about the response that

cannot be inferred from the status code alone. Here are some examples:

• Location: http://www.mywebsite.com/relocatedPage.html This header specifies a URL

towards which the client should redirect its original request. It always accompanies the ‘301’

and ‘302’ status codes that direct clients to try a new location.

• WWW-Authenticate: Basic realm="KremlinFiles" This header accompanies the ‘401’ status

code that indicates an authorization challenge. The value in this header specifies the protected

realm for which proper authorization credentials must be provided before the request can be

processed. In the case of web browsers, the combination of the ‘401’ status code and the

WWW-Authenticate header causes users to be prompted for ids and passwords.

• Server: Apache/1.2.5 This header is not tied to a particular status code. It is an optional

header that identifies the server software.

Entity headers describe either message bodies or (in the case of request messages that have

no body) target resources. Common entity headers include:

• Content-Type: mime-type/mime-subtype This header specifies the MIME type of the message

body’s content.

• Content-Length: xxx This optional header provides the length of the message body. Although

it is optional, it is useful for clients such as web browsers that wish to impart information about

the progress of a request. Where this header is omitted, the browser can only display the

amount of data downloaded. But when the header is included, the browser can display the

amount of data as a percentage of the total size of the message body.

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
3

Bushra
Typewriter
4

Bushra
Typewriter
المرجع:

Bushra
Typewriter
تفويض

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
مساعدة الخادم على تمرير معلومات إضافية حول الاستجابة التي لا يمكن استنتاجها من رمز الحالة وحده.

Bushra
Typewriter
1

Bushra
Typewriter
2

Bushra
Typewriter
3

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
هذا العنوان غير مرتبط برمز حالة معين

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
1

Bushra
Typewriter
2

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
إنه مفيد للعملاء مثل متصفحات الويب التي ترغب في نقل معلومات حول تقدم الطلب.

Bushra
Highlight

• Last-Modified: Sun, 11 Feb 2001 22:28:31 GMT This header provides the last modification

date of the content that is transmitted in the body of the message. It is critical for the proper

functioning of caching mechanisms

Type support through content-type

So far, we were concentrating on message metadata, and for a good reason: understanding

metadata is critical to the process of building applications. Still, somewhere along the line,

there’d better be some content. After all, without content, Web applications would have nothing

to present for end users to see and interact with. You’ve probably noticed that, when it comes

to content you view on the Web, your browser might do one of several things. It might:

 • render the content as an HTML page,

• launch a helper application capable of presenting non-HTML content,

• present such content inline (within the browser window) through a plug-in, or

• get confused into showing the content of an HTML file as plain text without attempting to

render it.

What’s going on here? Obviously, browsers do something to determine the content type and to

perform actions appropriate for that type. HTTP borrows its content typing system from

Multipurpose Internet Mail Extensions (MIME). MIME is the standard that was designed to help

e-mail clients to display non-textual content.

As in MIME, the data type associated with the body of an HTTP message is defined via two-

layer ordered encoding model, using Content-Type and Content-Encoding headers. In other

words, for the body to be interpreted according to the type specified in the Content-Type

header, it has to first be decoded according to the encoding method specified in the Content-

Encoding header.

The Content-Encoding entity header is used to compress the media-type. When present, its

value indicates which encodings were applied to the entity-body. It lets the client know, how to

decode in order to obtain the media-type referenced by the Content-Type header.

In HTTP/1.1, defined content encoding methods for the Content-Encoding header are "gzip",

"compress" and "deflate". The first two methods correspond to the formats produced by GNU

Bushra
Pencil

Bushra
Pencil

Bushra
Pencil

Bushra
Highlight

Bushra
Typewriter
3

Bushra
Highlight

Bushra
Typewriter
إنه أمر بالغ الأهمية للتشغيل السليم لآليات التخزين المؤقت

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
حتى الآن ، كنا نركز على البيانات الوصفية للرسالة ، ولسبب وجيه: فهم البيانات الوصفية أمر بالغ الأهمية لعملية إنشاء التطبيقات

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
ربما لاحظت أنه عندما يتعلق الأمر بالمحتوى الذي تشاهده على الويب ، فقد يقوم المستعرض الخاص بك بأحد الأشياء العديدة. قد يكون:

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
تشغيل تطبيق مساعد قادر على تقديم محتوى بخلاف HTML ،
• تقديم مثل هذا المحتوى مضمّنًا (داخل نافذة المتصفح) من خلال مكون إضافي ، أو
• الخلط بين عرض محتوى ملف HTML كنص عادي دون محاولة عرضه.

Bushra
Highlight

Bushra
Typewriter
ماذا يجري هنا؟

Bushra
Highlight

Bushra
Typewriter
من الواضح أن المتصفحات تفعل شيئًا ما لتحديد نوع المحتوى وتنفيذ الإجراءات المناسبة لهذا النوع.

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
محتوى غير نصي

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
لكي يتم تفسير الجسم وفقًا للنوع المحدد في رأس نوع المحتوى ، يجب أولاً فك تشفيره وفقًا لطريقة الترميز المحددة في رأس ترميز المحتوى.

Bushra
Highlight

Bushra
Typewriter
عندما تكون موجودة ، فإن
تشير القيمة إلى الترميزات التي تم تطبيقها على جسم الكيان. يتيح للعميل معرفة كيفية القيام بذلك
فك الشفرة للحصول على نوع الوسائط المشار إليه بواسطة رأس نوع المحتوى.

Bushra
Highlight

Bushra
Typewriter
في HTTP / 1.1 ، طرق ترميز المحتوى المحددة لرأس ترميز المحتوى هي "gzip" و "compress" و "deflate".

Bushra
Highlight

Bushra
Typewriter
الطريقتان الأوليان تتطابقان مع التنسيقات التي أنتجها جنو

zip and UNIX compress programs. The third method, "deflate", corresponds to the zlib format

associated with the deflate compression mechanism documented in RFC 1950 and 1951.

Obviously, if web servers encode content using these encoding methods, web browsers (and

other clients) must be able to perform the reverse operations on encoded message bodies

prior to rendering or processing of the content.

Browsers are intelligent enough to open a compressed document file (e.g. test.doc.gz) and

automatically invoke Microsoft Word to let you view the original test.doc file. It can do this if the

web server includes the "Content-Encoding: gzip" header with the response. This header will

cause a browser to decode the encoded content prior to presentation, revealing the test.doc

document inside.

The Content-Type header is set to a media-type that is defined as a combination of a type,

subtype and any number of optional attribute/value pairs:

media-type = type "/" subtype *(";" parameter-string) type = token subtype = token

The most common example is "Content-Type: text/html" where the type is set to "text" and the

subtype is set to "html". This obviously tells a browser to render the message body as an

HTML page.

Another example is:

Content-Type: text/plain; charset = ’us-ascii’

Here the subtype is "plain", plus there is a parameter string that is passed to whatever client

program ends up processing the body whose content type is "text/plain". The parameter may

have some impact on how the client program processes the content. If the parameter is not

known to the program, it is simply ignored.

Some other examples of MIME types are "text/xml" and "application/xml" for XML content,

"application/pdf" for Adobe Portable Data Format, and "video/x-mpeg" for MPEG2 videos.

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
من الواضح ، إذا قامت خوادم الويب بتشفير المحتوى باستخدام طرق التشفير هذه ، فإن متصفحات الويب (و
عملاء آخرين) يجب أن يكونوا قادرين على إجراء عمليات عكسية على نصوص الرسائل المشفرة
قبل تقديم المحتوى أو معالجته

Bushra
Typewriter
المتصفحات ذكية بما يكفي لفتح ملف مستند مضغوط (مثل test.doc.gz) واستدعاء Microsoft Word تلقائيًا للسماح لك بعرض ملف test.doc الأصلي. يمكنه القيام بذلك إذا تضمن خادم الويب رأس "Content Encoding: gzip" مع الاستجابة. سيؤدي هذا العنوان إلى قيام المستعرض بفك تشفير المحتوى المشفر قبل العرض التقديمي ، وكشف المستند test.doc بالداخل

Bushra
Highlight

Bushra
Typewriter
يتم تعيين رأس نوع المحتوى على نوع وسائط يتم تعريفه على أنه مزيج من النوع والنوع الفرعي وأي عدد من أزواج السمات / القيمة الاختيارية

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

Bushra
Typewriter
قد يكون للمعلمة بعض التأثير على كيفية معالجة برنامج العميل للمحتوى

Bushra
Highlight

Bushra
Highlight

Bushra
Highlight

