المحاضرة السادسة: خرائط كارنوف باربعة مداخل مفكك الترميز Decoder ناخب المعطيات Multiplexer

د سمير امبارك

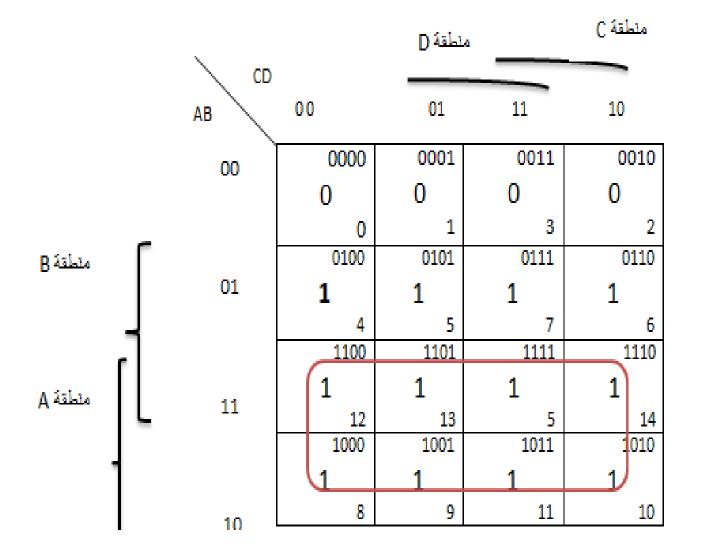
مثال 1

صمم دائرة تركيبة مداخلها عبارة عن عدد ثنائي من اربع خانات مخرج الدائرة يساوي 1 اذا كانت قيمة العدد الداخل اكبر من 3. الحل:

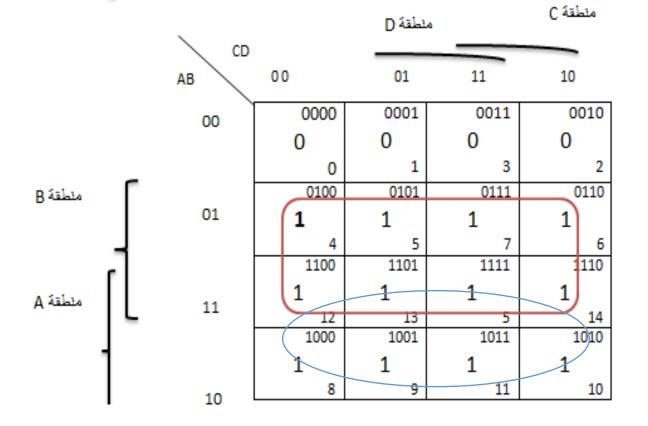
Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

تصميم جدول الاحتمالات بالمداخل والمخرج

ثم نرسم خريطة كارنوف عدد مربعاتها = 2 عدد المداخل جدول الاحتمالات


.16= 42=

				نطقة D		منطقة C
		AB CD	00	01	11	10
		00	0000	0001	0011	0010
	_		0	1	3	2
منطقة B	ſ	01	0100	0101	0111	0110
	4		4	5	7	6
منطقة Α		11	1100	1101	1111	1110
],		12	13	5	14
		10	1000	1001	1011	1010
	Ĺ		8	9	11	10


ايجاد المعادلة الجبرية للمخرج F

		\ co		منطقة D		منطقة C
		AB CD	00	01	11	10
		00	0000	0001	0011	0010
			0	0	0	0
			0	1	3	2
منطقة B	Γ		0100	0101	0111	0110
	1	01	1	1	1	1
	4		4	5	7	6
	r I		1100	1101	1111	1110
منطقة Α	П	11	1	1	1	1
A	L	11	12	13	5	14
			1000	1001	1011	1010
	1		1	1	1	1
	l	10	8	9	11	10

نبدأ بوصف كل 1 في الخريطة:

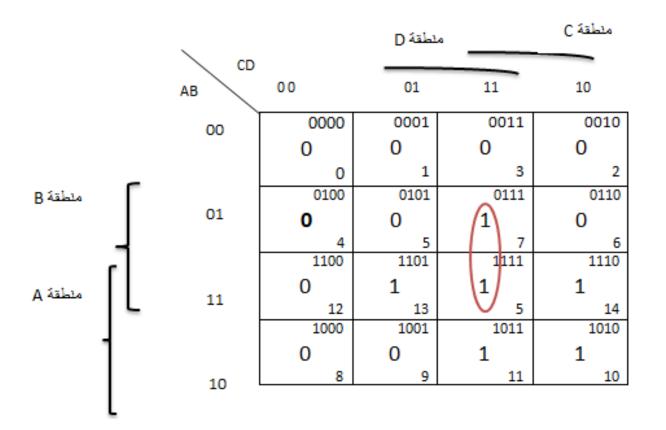
• نصف هذه المجموعة كلاتي

ننصف هذه المجموعة كلاتي
$$B$$
 (Harabetta) B (F(A,B,C,D) = A + B

$$\begin{array}{c} A \\ B \\ \hline \end{array} \longrightarrow Y$$

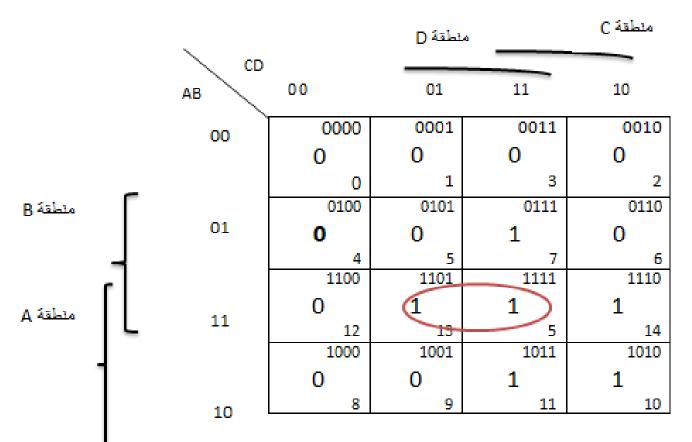
مثال 2:

صمم دائرة تركيبة لها مدخلان كل منهما عبارة عن عدد ثنائي من BITS 2 مخرج الدائرة عبارة عن حاصل جمع المدخلين .

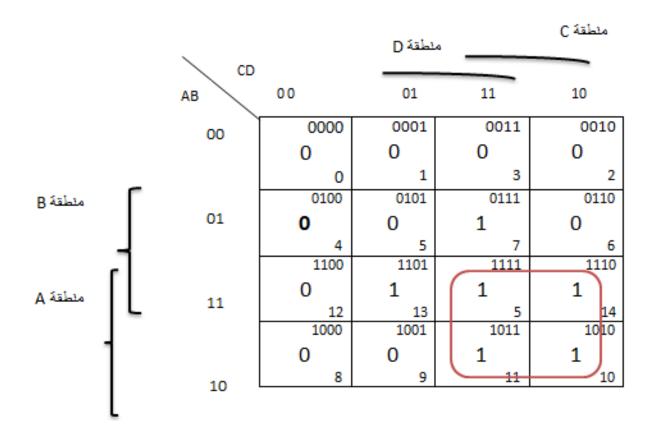

Y Z	X	D	С	В	Α
0 0	0	0	0	0	0
0 1	0	1	0	0	0
1 0	0	0	1	0	0
1 1	0	1	1	0	0
0 1	0	0	0	1	0
1 0	0	1	0	1	0
1 1	0	0	1	1	0
0 0	1	1	1	1	0
1 0	0	0	0	0	1
1 1	0	1	0	0	1
0 0	1	0	1	0	1
0 1	1	1	1	0	1
1 1	0	0	0	1	1
0 0	1	1	0	1	1
0 1	1	0	1	1	1
1 0	1	1	1	1	1

الحل:

لتمثیل المخرج نحتاج لثلاث خانات لنفرض ان اسماهم X,Y,Z


باستخدام خرائط كارنوف اولا نبدا بإجاد المعادلة الجبرية للمخرج X:

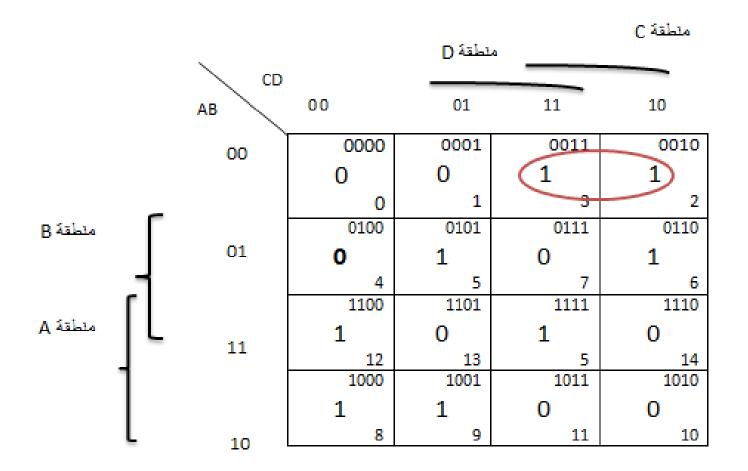
	\ 00		نطقة D	•	منطقة C
	AB CD	00	01	11	10
	00	0000	0001	0011	0010
		0	0	0	0
	_	0	1	3	2
منطقة B		0100	0101	0111	0110
	01	0	0	1	0
4		4	5	7	6
r		1100	1101	1111	1110
منطقة Α	4.4	0	1	1	1
^ [_ 11	12	13	5	14
J		1000	1001	1011	1010
1		0	0	1	1
	10	8	9	11	10


نصف هذه المجموعة كلاتي: BCD بهذا يكون المخرج

$$(A,B,C,D) = ABD$$

نصف هذه المجموعة كلاتي: ABD بهذا يكون المخرج

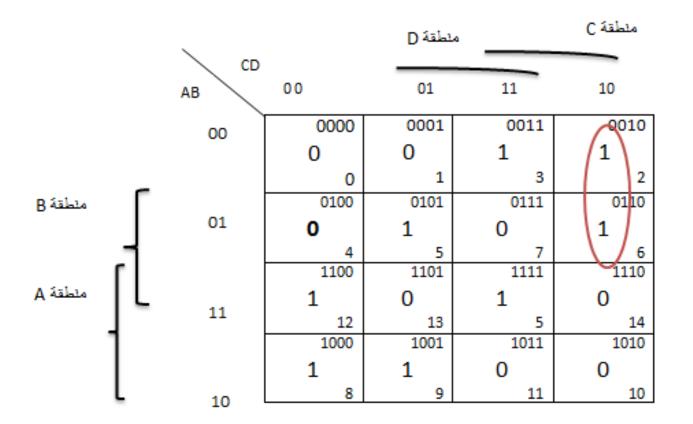
$$X(A,B,C,D) = BCD + ABD$$



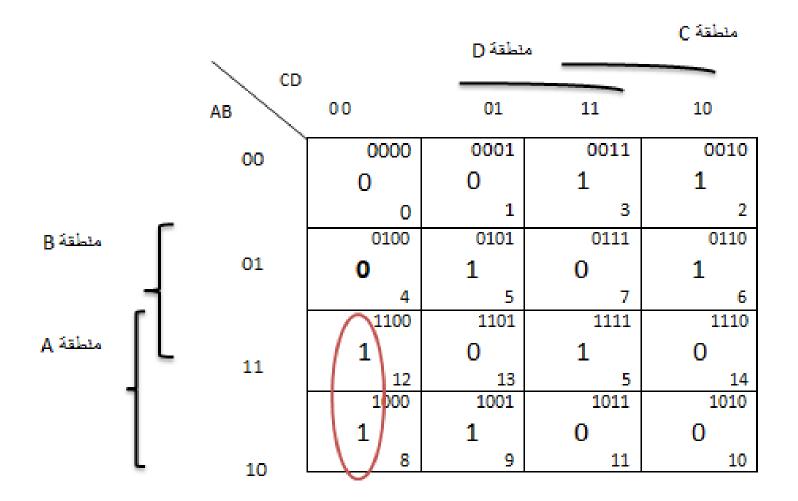
نصف هذه المجموعة كلاتي AC بهذا يكون المخرج

X(A,B,C,D) = BCD + ABD + AC

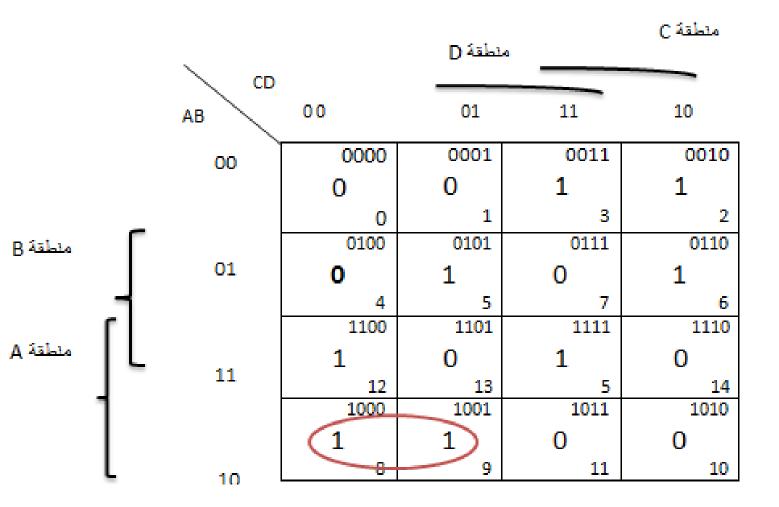
تانيا نبدأ بإجاد المعادلة الجبرية للمخرج ٧:


				منطقة D		منطقة C
		CD AB	00	01	11	10
		00	0000	0001	0011	0010
		-	0	0	1	1
	_		0	1	3	2
منطقة B	Γ		0100	0101	0111	0110
		01	0	1	0	1
	4		4	5	7	6
	c		1100	1101	1111	1110
منطقة Δ	Ш	4.4	1	0	1	0
^ —-	L	11	12	13	5	14
	_		1000	1001	1011	1010
	1		1	1	0	0
		10	8	9	11	10

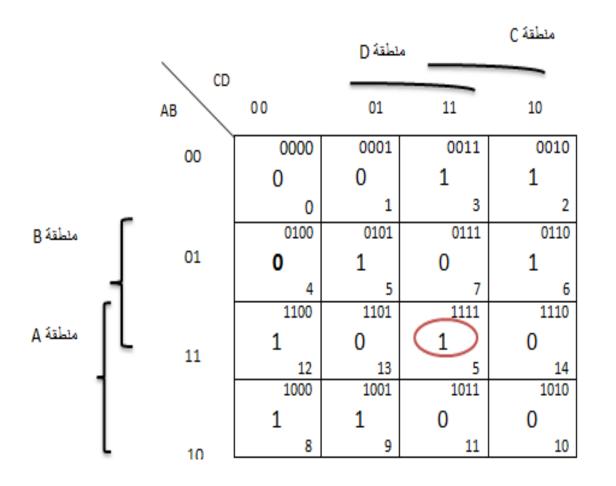
نصف هذه المجموعة كلاتي ABC


بهذا يكون المخرج

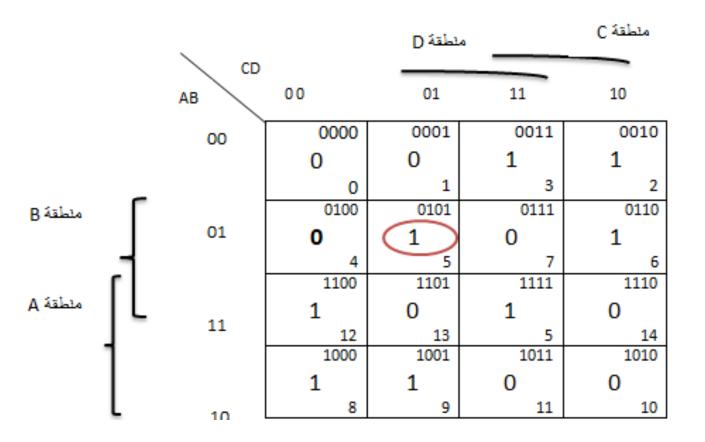
$$Y(A,B,C,D) = \overline{ABC}$$


نصف هذه المجموعة كلاتي ACD بهذا يكون المخرج

Y(A,B,C,D) = ABC + ACD

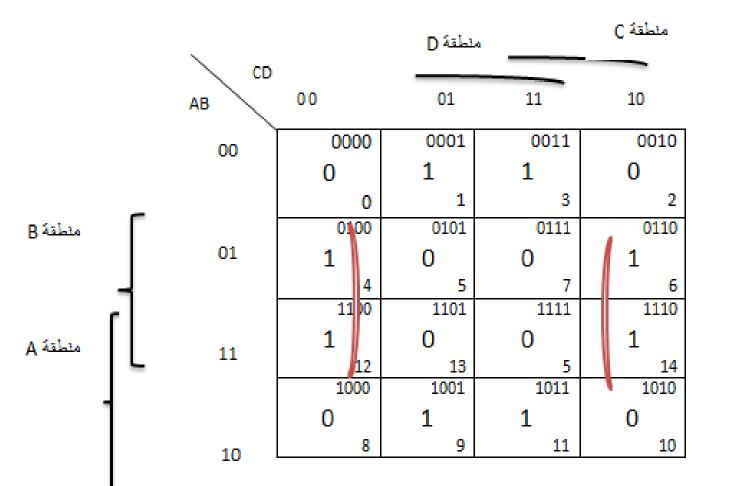

نصف هذه المجموعة كلاتي ACD بهذا يكون المخرج

$$Y(A,B,C,D) = ABC + ACD + ACD$$

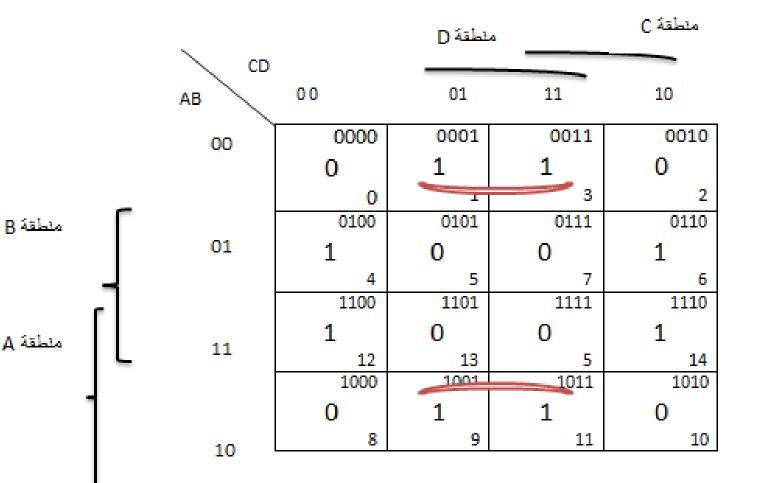

نصف هذه المجموعة كلاتي ABC

بهذا يكون المخرج Y(A,B,C,D) = ABC + ACD+ACD + ABC

نصف هذه المجموعة كلاتي ABCD بهذا يكون المخرج

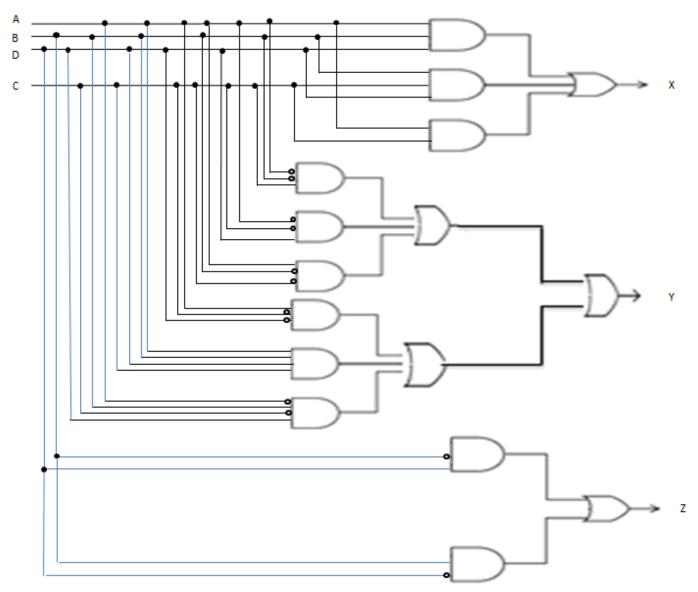

Y(A,B,C,D) = ABC + ACD + ACD + ABCD + ABCD

نصف هذه المجموعة كلاتي ABCD بهذا يكون المخرج


Y(A,B,C,D) =
$$\overline{ABC}$$
 + \overline{ACD} + \overline{ABC} + \overline{ABCD} + \overline{ABCD}

ثالثا: نبدأ بإجاد المعادلة الجبرية للمخرج 2:

نصف هذه المجموعة كلاتي BD هذا يكون المخرج


$$Z(A,B,C,D) = B\overline{D}$$

نصف هذه المجموعة كلاتي BD هذا يكون المخرج

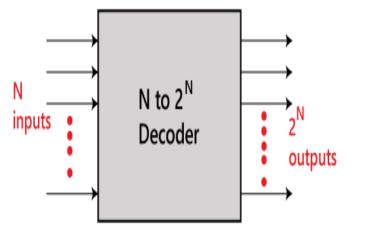
$$Z(A,B,C,D) = B\overline{D} + \overline{B}D$$

وشكل الدائرة كالاتي:

تمارین

ح صمم دائرة تركيبية مدخلها عبارة عن عدد ثنائي من 4 Bits ، مخرجها يشتغل إذا كان العدد الداخل عنصر من عناصر النظام BCD .

حصم دائرة تركيبية لها مدخلان مل منهما عبارة عن عدد ثنائي من BITS 2 مخرج الدائرة عبارة عن حاصل ضرب المدخلين.


مفكك الترميز DECODER

♦ هو عبارة عن دائرة منطقية لها مدخل واحد على الاقل وعدد مخارجها عبارة عن 2 عدمداخلها .

حوإن كان للديكور مدخلان فاعلم ان له 4 مخارج.

حوإن كان للديكور ثلاث مداخل فاعلم ان له 8 مخارج وهكذا.

❖ Decoder تضمن لنا أن واحد فقط (على الاكتر) من مخارجها بشتغل = 1 اعتمادا على القيمة المدخلة.

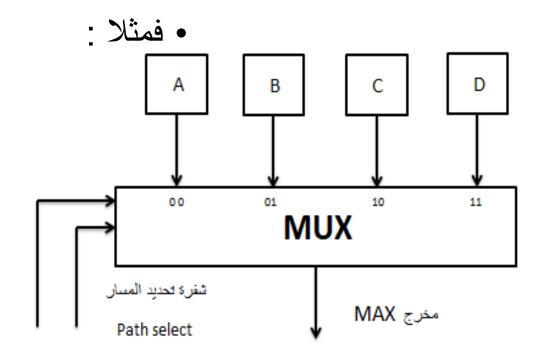
للديكور مدخل تحكم يسمى Enable قيمته 0 أو 1.

بناوي 0 (لا تشتغل) ♦ في حالة E=0 : فان جميع مخارج Decoder

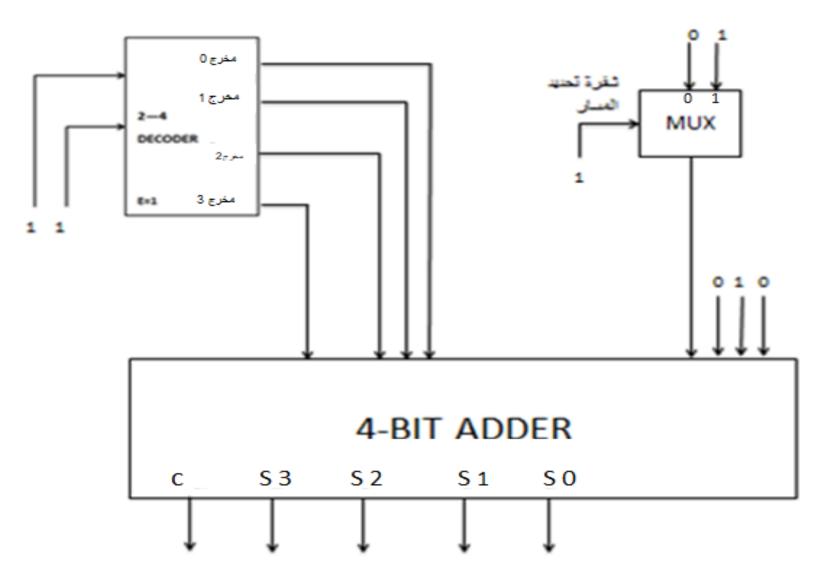
❖بينما في حاله مدخل التحكم E=1: فان Decoder تضمن لنا أن واحد فقط من مخارجها يشتغل =1 اعتمادا على قيمه المدخل.

فمثلا:

اذا كانت قيمه المدخل تساوي 00 فاعلم ان المخرج 0 يساوي 1 وباقي مخارج الديكودر تساوي 0.
اذا كانت قيمه المدخل تساوي 10 فاعلم ان المخرج 2 يساوي 1 وباقي مخارج الديكودر تساوي 0.


ناخب المعطيات Multiplexer

❖ يملك MUX مجموعة من المداخل (المصادر) ومخرج واحد فقط و مدخل التحكم (شفرة تحديد المسار Path select).


❖ تسمح MUX لاحد فقط من مصادر ها اليا بالمرور الي مخرجها اعتمادا على مدخل التحكم.

فمثلا

اذا كانت قيمة شفرة تحديد المسار Path اذا كانت قيمة شفرة تحديد المسار select تساوي 00 فسيسمح بنسخة من محتويات المصدر A بالمرور الى مخرج MUX .

تمرین ماهي مخرجات BIT ADDER – 4

انتهت المحاضرة