محاضرة الثالثة: نظريات الجبر البولي

د سمير امبارك

نظريات الجبر البولياني

هو جبر المتغيرات المنطقية، و الهدف الأساسي من دراستنا لنظريات الجبر البولياني هو استخدام تلك النظريات في تبسيط التعبيرات المنطقية.

لكل نظرية من نظريات الجبر البولياني نظرية مقابلة (dual) أو مناظرة لها للحصول على النظرية الأصلية:

استبدال أي 0 بـ 1

استبدال أي 1 بـ 0

استبدال أي عملية AND بعملية OR

استبدال أي عملية OR بعملية AND

يمكن إثبات صحة أي نظرية باستخدام جداول الصواب.

الجدول التالي يوضح النظريات الأساسية المستخدمة في الجبر البولياني.

النظرية المقابلة	النظرية	اسم النظرية
A = A	A = A	عكس العكس
$A \cdot 0 = 0$	A+1=1	العمليات مع 1 و 0
$A \cdot 1 = A$	A+0=A	, ,
$A \cdot A = A$	A + A = A	المتغير مع نفسه
$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$	المتغير مع عكسه
$A \cdot B = B \cdot A$	A+B=B+A	النظرية الإبدالية
$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A+B)+C=A+(B+C)	النظرية التجميعية
$A+B\cdot C=(A+B)\cdot (A+C)$	$A \cdot (B+C) = A \cdot B + A \cdot C$	النظرية التوزيعية
$A \cdot (A + B) = A$	$A + A \cdot B = A$	- N-N-1 1 - N-
$A \cdot (\overline{A} + B) = A \cdot B$	$A + \overline{A} \cdot B = A + B$	الامتصاص أو الابتلاع
$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \cdot \overline{B}$	دي مورغان (De Morgan)

الصيغة العامة لنظرية دي مورغان

$$F(X,\overline{Y},+,.)$$

$$\overline{\mathsf{F}}(\overline{\mathsf{X}},\mathsf{Y},.,+)$$

مثال 1

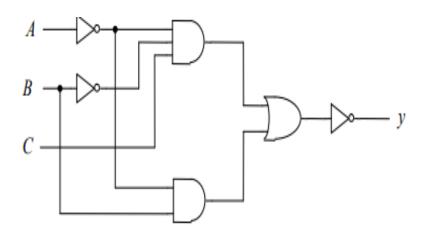
استخدم نظريات الجبر البولياني في تبسيط التعبير المنطقي الاتي ثم ارسم الدائرة المنطقية قبل التبسيط و بعده.

$$y = \overline{\overline{ABC} + \overline{AB}}$$

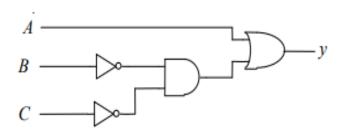
الحل:

$$y=\overline{ABC}+\overline{AB}$$
 $y=(\overline{A}+\overline{B}+\overline{C})\cdot(\overline{A}+\overline{B})$ دي مورغان $y=(A+B+\overline{C})\cdot(A+\overline{B})$ عکس العکس $y=A+(B+\overline{C})\cdot\overline{B}$ $y=A+\overline{CB}$

الدائرة قبل التبسيط



الدائرة بعد التبسيط



لاحظ أن الدائرة قبل التبسيط مكونة من 6 بوابات، و بعد التبسيط أصبحت مكونة من 4 بوابات فقط.

مثال 2 :

استخدم نظريات الجبر البولياني في تبسيط التعبير المنطقي الاتي

$$y = \overline{A}(A+B) + \overline{C} + CB$$

ثم ارسم الدائرة المنطقية قبل التبسيط و بعده. الحل:

$$y = \overline{A}(A+B) + \overline{C} + CB$$

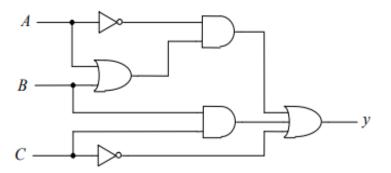
$$y = \overline{AB} + \overline{C} + CB$$
 الابتلاع

$$y = \overline{AB} + \overline{C} + B$$
 الابتلاع

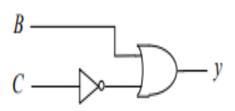
$$y = \overline{AB} + B + \overline{C}$$
 الإبدالية

$$y = B + \overline{C}$$
 الابتلاع

الدائرة قبل التبسيط



الدائرة بعد التبسيط



: 3 مثال

استخدم نظريات الجبر البولياني في تبسيط التعبير المنطقي الاتي

 $F = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.B.C + A.\overline{B}.\overline{C}$

الحل

$$F = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.B.C + A.\overline{B}.\overline{C}$$

التوزيعية

لنفرض ان

$$\gamma = (BC + B\overline{C})$$
 $Y = B \oplus C$

معادلة بوابة XOR

بالتعويض بقيمة \overline{Y} , \overline{Y} في اخر معادلة لf

$$F = \overline{A} Y + A \overline{Y}$$

 $F = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.B.C + A.\overline{B}.\overline{C}$

$$F = A \oplus B \oplus C$$

اذا فالمعادلة

 $F = A \oplus B \oplus C$

يمكن اختصارها

انتهت المحاضرة