
7/10/2022

1

Lecture

By: Zahra A. Elashaal

Derivation of the Newton–Raphson Method

• We will start using a Taylor series to derive the Newton–Raphson
technique. We assume the current guess is x and this is incremented by
an amount h, so that x + h is the required value. It now remains for us
to determine h or at least find an approximation to it.

• The Taylor expansion for the function f(x) at the point x + h is given
by:

• This can be interpreted as: the value of the function at x + h is equal to the value of the function at
x plus the gradient times the distance between the points. This can be considered to include further
terms; at the moment we are fitting a straight line.

• We now note that x + h is supposedly the actual root so f(x+h) = 0, and discarding the higher-order
terms O(h2) we find that

The central premise for both methods is that the function is locally linear and the next
iteration for the required value can be attained via linear extrapolation (or interpolation).

7/10/2022

2

This presumes we are close to the actual root, and consequently
we can discard the terms proportional to h2 since these should be
smaller than those proportional to h.

• This allows us to construct the iterative scheme

• This method can also be derived using geometric arguments.

In these derivations the function is taken to be approximated

by a straight line in order to determine the next point.

At the moment we shall presume that we have two routines func.m and func_prime.m which give
us the function and its derivative.

• For ease let us consider the function f(x) = x − 2 sinx2, so f’(x) = 1 − 4x cos x2 (using the chain
rule). The code func.m and func_prime.m is given as:

% func_prime.m

function [value] = func_prime(x)

value = 1 - 4*x.*cos(x.ˆ2);

x = 1;

for j = 1:10

x = x - func(x)/func_prime(x);

end

• Notice that we have used the dot operators, even though this routine is only ever likely to be
called in this context using a scalar. This permits the routine to be used from other codes in a
portable fashion.

• This can be coded simply using

• where we have set the initial guess to be x = 1 and supposed that the method will converge in
10 iterations.

% func.m

function [f] = func(x)

f = x-2*sin(x.ˆ2);

7/10/2022

3

We now give a more robust code to perform
the iterations

• Hopefully you can see the difference
between the two codes and see that
ultimately

• the second version is more useful. By
entering the values 0.1, 0.6 and 1.5 we can
obtain the three roots we are concerned
with.

• Notice we have increased the number of
digits printed in the answer to 10 using the
form of the MATLAB command num2str
which accepts two arguments.

% Newton_Raphson.m

x = input(’Starting guess: ’);

tolerance = 1e-8;

iterations = 0;

while (iterations<30) & (abs(func(x))>tolerance)

x = x-func(x)/func_prime(x);

iterations = iterations + 1;

end

if iterations==30

disp(’No root found’)

else

disp([’ Root = ’ num2str(x,10) ’ found in ’ ...

int2str(iterations) ’ iterations.’])

end

We will introduce two additional methods to find numerical solutions of the equation f(x) = 0. The Secant
Method and False Position Method. Both of these methods are based on approximating the function by
secant lines just as Newton's method was based on approximating the function by tangent lines.

The Secant Method

The secant method requires two initial approximations x0 and x1,
preferably both reasonably close to the solution xr From x0 and x1 we
can determine that the points (x0; y0 = f(x0)) and (x1; y1 = f(x1)) both lie
on the graph of f. Connecting these points gives the (secant line).

Repeating this process gives us the iteration with yi = f(xi).

• We then move on so that we are going to use x0 = x1 and x1 = x2 as the
next two points.

𝑥𝑖+1 = 𝑥𝑖 − 𝑓(𝑥𝑖)
𝑥𝑖 − 𝑥𝑖−1

𝑓 𝑥𝑖 − 𝑓(𝑥𝑖−1)

(x; y)

𝑦 − 𝑓(𝑥1)

𝑓 𝑥1 − 𝑓(𝑥0)
=
𝑥 − 𝑥1
𝑥1 − 𝑥0

𝑥2 = 𝑥1 − 𝑓 𝑥1
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓 𝑥0
= 𝑥0 − 𝑓 𝑥0

𝑥1 − 𝑥0
𝑓 𝑥1 − 𝑓 𝑥0

𝑦 − 𝑓(𝑥0)

𝑓 𝑥1 − 𝑓(𝑥0)
=
𝑥 − 𝑥0
𝑥1 − 𝑥0

• Since we want f(x) = 0, we set y = 0, solve for x (x2 say) , and use that
as our next approximation.

or

7/10/2022

4

Example, suppose f(x) = x4 - 5, which has a solution

𝑥𝑟 =
4
5 ≈ 1.5 Choose x0 = 1 and x1 = 2 as initial

approximations.

Next we have that y0 = f(1) = -4 and y1 = f(2) = 11.
We may then calculate x2 from the formula:

Pluggin x2 = 19/15 into f(x) we obtain y2 = f(19/15)
= -2.425758… .

In the next step we would use x1 = 2 and x2 = 19/15
in the formula to find x3 and so on.

𝑥2 = 2 − 11
2−1

11 − −4
=

19

15
≈ 1.2666… .

Exercises

Perform 3 iterations of the secant method

on the function f(x) = x3 - 4, with starting

points x-1 = 1 and x0 = 3. (By hand, but

use a calculator.)

Calculate the errors and percentage errors

of x1, x2, and x3.𝑥2 = 𝑥1 − 𝑓(𝑥1)
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0)

• We wish to find the value of x (x2 say) for which
y = 0 which is given by using Matlab and from
the equation:

• We then move on so that we are going to use
x1 and x2 as the next two points.

• This is coded to give:

% Secant.m

x0 = input(’Starting guess point 1 :’);

x1 = input(’Starting guess point 2 :’);

tolerance = 1e-8;

iterations = 0;

while (iterations<30) & (abs(func(x1))>tolerance)

iterations = iterations + 1 ;

f0 = func(x0);

f1 = func(x1);

x2 = x1-f1*(x1-x0)/(f1-f0);

x0 = x1;

x1 = x2;

end

if iterations==30

disp(’No root found’)

else

disp([’ Root = ’ num2str(x1,10) ’ found in ’ ...

num2str(iterations) ’ iterations.’])

end

𝑥2 = 𝑥1 − 𝑓(𝑥1)
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0)

7/10/2022

5

The False Position method is a combination of the secant method and bisection method. As in the

bisection method, we have to start with two approximations a and b for which f(a) and f(b) have

different signs (f(a) . f(b) < 0). As in the secant method, we follow the secant line to get a new

approximation, which gives a formula similar to,

• Then, as in the bisection method, we check the sign of f(x);
if it is the same as the sign of f(a) then x becomes the new a
and otherwise let x becomes the new b.

• Note that in general either a → xr or b → xr but not both.

The False Position Method

𝑥 = 𝑏 − 𝑓 𝑏
𝑏 − 𝑎

𝑓 𝑏 − 𝑓 𝑎

𝑥2 = 𝑥1 − 𝑓(𝑥1)
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0)

(x; y)

a

b

First, we must choose two initial guesses x0 and x1 such that f(x) changes sign between x0 and x1.

Choosing x0 = 1 and x1 = 1.5, we see that f(x0) = f(1) = -1 and f(x1) = f(1.5) = 0.25, so these choices are

suitable.

Computing f(x2) = f(1.4) = -0.04 < 0. Since f(x2) < 0 and f(x1) > 0, we can replace x0 by x2 to conclude
that a solution exists in the interval (x2; x1). Therefore, we compute x3 by determining where the secant
line through the points (x1; f(x1)) and f(x2; f(x2)) intersects the line y = 0. Using the Secant Method, we
obtain

Example: We use the Method of Regula Falsi to solve f(x) = 0 where f(x) = x2 - 2.

𝑥2 = 𝑥0 − 𝑓 𝑥0
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓 𝑥0
= 1 − −1

1.5 − 1

0.25 − −1
= 1 +

0.5

1.25
= 1.4

Next, we use the Secant Method to compute the next iterate x2 by determining the point at which the

secant line passing through the points (x0; f(x0)) and (x1; f(x1)) intersects the line y = 0. We have

𝑥3 = 𝑥1 − 𝑓 𝑥1
𝑥2 − 𝑥1

𝑓 𝑥2 − 𝑓 𝑥1
= 1.5 − 0.25

1.4 − 1.5

−0.04 − 0.25
= 1.41379

We do know that a solution exists in the interval (x3; x1), because f(x1) > 0 and f(x3) < 0 . Therefore,

we use the secant line determined by x1 and x3 to compute x4.

7/10/2022

6

• This method works far better if the two initial points
are on opposite sides of the root.

• In the above method we have merely chosen to
proceed to use x1 and the newly attained point x2:
however we could equally have chosen x0 and x2.

• In order to determine which we should use we
require that the function changes sign between the
two ends of the interval.

• This is done by changing the lines where the next
interval is chosen.

%False_Position.m

x0 = input(’Starting guess point 1 :’);

x1 = input(’Starting guess point 2 :’);

x2 = x0;

tol = 1e-8;

iters = 0;

while ((iters<30) & (abs(func(x2))>tol))|(iters==0)

iters = iters + 1 ;

f0 = func(x0);

f1 = func(x1);

x2 = x0-f0*(x1-x0)/(f1-f0);

if func(x2)*f0 < 0

x1 = x2;

else

x0 = x2;

end

end

if iters==30

disp(’No root found’)

else

disp([’ Root = ’ num2str(x2,10) ’ found in ’ ...

num2str(iters) ’ iters.’])

end

𝑥2 = 𝑥1 − 𝑓(𝑥1)
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0)

𝑥2 = 𝑥0 − 𝑓(𝑥0)
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0)

Example: Using the method of False Position find the roots of the function sin(x − x3)

between x = 0 and x = 6.

Note: The zeros of this function occur where x − x3 = nπ. In order to obtain initial estimates for the
range we plot the function sin(x − x3) .

The first root corresponds to n = 0. We note that the

function gets very oscillatory as x increases and may

show problems as more roots are required, in which

case the roots of the cubic x−x3 = nπ can be sought,

using for instance roots.

Let x0 = 1.6 and x1 = 1.8 and complete the solution to

find the root and its iteration.

7/10/2022

7

o If we can begin with a good choice x0, then:

• Newton's method will converge to xr rapidly.

• The secant method is a little slower than Newton's method

• and the Regula Falsi method is slightly slower than that.

However, both are still much faster than the bisection method.

o If we do not have a good starting point or interval, then:

 The secant method, just like Newton's method, can fail altogether.

 The Regula Falsi method, just like the bisection method, always works because it keeps

the solution inside a definite interval.

Example 4.3 consider the function f(x)= xm−a
where a>0. The roots of this equation are 𝑚 𝑎
or, written another way, a1/m.

For this equation we can write the Newton–
Raphson scheme as:

Notice this is exactly the map solved in the
example on page 91, with a = 3 and m = 2.

which can be simplified to yield:

Example 4.4 Using the Newton–Raphson routine
determine the zero of the function

real root is found using the Matlab code co=[1 1 0 -1];

roots(co). Then to retrieve the root of the equation we use

the fact that x = lnY.

This can be done by setting up the functions

function [value] = func(x)

value = exp(x) -exp(-2*x)+1;

function [value] = func_prime(x)

value = exp(x)+2*exp(-2*x);

This yields the result

>> Newton_Raphson

Starting guess :-2

Root = -0.2811995743

found in 8 iterations.

(with a tolerance of 1×10−10). In fact we can solve this

equation by introducing the variable Y = ex, and noting that

Y is never zero. We can rewrite f(x) as

𝑓 𝑥 =
1

𝑌2
(𝑌3 − 1 + 𝑌2)

7/10/2022

8

Roots of a Polynomial

• As we have seen Matlab has a specific command for finding the roots of a polynomial, namely roots.

• The coefficients of the polynomial are placed in a vector c and the routine returns the corresponding roots.

• It is very simple to use, but care is need when entering the coefficients.

c = [1 -1 1 2 0 -1];

roots(c)

There are a couple of things to note from this example:

• The polynomial’s coefficients are listed starting with the one corresponding to the largest power.

• It is crucial that zeros are included in the sequence where necessary (in the above we have included the zero

times x term).

• As a simple check, a polynomial of order or degree p has p + 1 coefficients, and it will have p roots.

• So as long as the coefficients of the polynomial are real, the roots will be real or occur in complex

conjugate pairs.

Example 4.6 Find the roots of the quantic equation f(x) = x5 − x4 + x3 + 2x2 − 1.

This is accomplished using the code:

The Command fzero

The Matlab command fzero is very powerful. It
actually chooses which scheme should be used to
solve a given problem. Let us try the form of the
command.

fzero (’func’, 0.4, optimset(’disp’,’iter’))

The command uses many different forms but here

we are looking for a root of the function defined in

func.m near the value x = 0.4 and the options are

set to display iterations.

This produces

7/10/2022

9

>> fzero(’myfunc’,1)

Zero found in the interval: [0.84, 1.16].

ans = 1.1142

function [val] = myfunc(x)

val = x-x.ˆ2.*sin(x);

Example 4.7 Determine the zero of the function f(x) = x − x2 sin x nearest to x = 1.

We need to set up the code

and then use the inline command fzero(’myfunc’,1). and This gives

HomeWork tasks Page 130 - 132 from Task 4.2 To Task 4.13

Any Question?

