Numerical Methods ITGS219

Lecture Bisection Method Root Finding By: Zahra A. Elashaal

Root Finding by using Bisection Method

In the fixed point iteration method we used an initial estimate for a root: here we shall use a bracketing interval.

- Our initial assumption is that this interval contains a single root. In order to check this hypothesis we shall build in checks at each stage.
- If the initial interval is between x = a and x = b we know that f(a) and f(b) are of different signs (for the interval to contain a single root): in which case their product must be negative.
- As the name of the method suggests we bisect the interval and define the point c = (b+a)/2.
- We can now evaluate the function to obtain f(c).
- This must either be positive or negative (or if we are very lucky zero).
- In which case f(c) will have the same sign as either f(a) or f(b).
- The new interval can then be defined as c and whichever end of the previous interval represents a change in sign of the function.

Root Finding (Bisection Method

• A simple version of a code to use this method in an interval [a, b] would be

- where in this case a = 1, b = 5 and the function f(x) is defined in a *routine f.m.*
- This method is perfectly adequate if you know that the method will *converge* in 10 steps, the interval [*a*, b] *actually contains a root and no future iterations* actually coincide with a root

```
% hisect m
function [answer, iflag] = bisect(fun, a, b)
global tolerance maxits
if lag = 0;
iterations = 0;
f_a = feval(fun,a);
f_b = feval(fun,b);
 while ((f_a*f_b<0) & iterations < maxits) & (b-a)>tolerance
    iterations = iterations + 1;
    c = (b+a)/2;
    f c = feval(fun,c);
    if f_c*f_a<0
          b=c; f_b = f_c;
    elseif f b*f c < 0
          a=c; f_a = f_c;
    else
         if lag = 1; answer = c;
   end
end
switch iterations
  case maxits
       if lag = -1; answer = NaN;
  case 0
      if lag = -2; answer = NaN;
  otherwise
      iflag = iterations; answer = c;
end
```

Root Finding (Bisection Method cont.)

% func.m function [f] = func(x) f = x-2*sin(x.^2);

```
% mbisect.m
global tolerance maxits
tolerance = 1e-4;
maxits = 30:
xlower = 0.4;
xupper = 0.6;
[root,iflag] = bisect('func', xlower, xupper);
switch iflag
 case -1
    disp('Root finding failed')
 case -2
    disp('Initial range does not only contain one root')
 otherwise
   disp(['Root = 'num2str(root) ...' found in '
   num2str(iflag) 'iterations'])
end
```

- This method is guaranteed to work provided only one root is in the relevant interval and the function is *continuous*.
- It may work if there are three roots <u>but</u> this is <u>not</u> <u>recommended</u>: in fact it appears to work provided there are an <u>odd number of roots</u>, because each iteration may remove a number of roots which is guaranteed to be even.
- We note that the length of the interval after *n* iterations is $(b a)/2^n$. Hence if we wish to know the root to within a given tolerance we can work out how many iterations we need to perform.
- So that, if the required *tolerance* is *e*, we find that:

Number of iterations we need is:
$$n > \frac{1}{\ln 2} \ln \left(\frac{b-a}{\epsilon} \right)$$

Example 4.2 To determine a root of a continuous function f(x) between [0,1], given that f(0)f(1) < 0 to within 1×10^{-4} requires $n > \ln(10^4)/\ln 2 \approx 13.28$: in other words **14** *iterations.*

Root Finding(Bisection Method cont...)

Bisection Method Example

Determine the root of the given equation $x^2 - 3 = 0$ for $x \in [1,2]$

• Given: $x^2 - \beta = 0 \implies$ Let $f(x) = x^2 - \beta$

• Now, find the value of f(x) at a=1 and b=2.

$$f(x=1) = 1^2 - 3 = 1 - 3 = -2 < 0$$

$$f(x=2) = 2^2 - 3 = 4 - 3 = 1 > 0$$

- The given function is continuous, and the root lies in the interval [1, 2].
- Let "c" be the midpoint of the interval. => c = (a+b)/2c = (1+2)/2, c = 3/2, c = 1.5

- $f(c) = f(1.5) = (1.5)^2 3 = 2.25 3 = -0.75 < 0$
- If f(c) < 0, let a = c. And If f(c) > 0, let b = c.
- f(c) is negative, so a is replaced with c = 1.5 for the next iterations.

Iteration	а	b	c	f(a)	f(b)	<i>f(c)</i>
1	1	2	1.5	-2	1	-0.75
2	1.5	2	1.75	-0.75	1	0.062
3	1.5	1.75	1.625	-0.75	0.0625	-0.359
4	1.625	1.75	1.6875	-0.3594	0.0625	-0.1523
5	1.6875	1.75	1.7188	-01523	0.0625	-0.0457
6	1.7188	1.75	1.7344	-0.0457	0.0625	0.0081
7	1.7188	1.7344	1.7266	-0.0457	0.0081	-0.0189

The iterations for the given function are:

- So, at the seventh iteration, we get the final interval [1.7266, 1.7344]
- Hence, 1.7344 is the approximated solution.

Root Finding(Bisection Method Cont...)

Algorithm			
Bisection method Steps (Rule)			
Step-1:	Find points <i>a</i> and <i>b</i> such that $a < b$ and $f(a) \cdot f(b) < 0$.		
Step-2:	Take the interval [a, b] and find next value $x_0 = \frac{a+b}{2}$		
Step-3:	If $f(x_0) = 0$ then x_0 is an exact root, else if $f(a) \cdot f(x_0) < 0$ then $b = x_0$, else if $f(x_0) \cdot f(b) < 0$ then $a = x_0$.		
Step-4:	Repeat steps 2 & 3 until $f(x_i) = 0$ or $ f(x_i) \le Accuracy$		

Example-2 By using Bisection method find the root for $f(x)=x^3-x-1$ in the interval [1,2] and with acceptance error =0.0005

Solution:

Here $x^3-x-1=0 =>$ Let $f(x)=x^3-x-1$

Here f(1) = -1 < 0 and f(2) = 5 > 0 so the root lies between 1 and 2

as e=0.0005 then number of iterations is:

$$n > \frac{1}{\ln 2} \ln \left(\frac{b-a}{\epsilon} \right).$$

$$\begin{array}{rl} n &> 1/ln2 * ln (1/.0005) \\ &> 1.44 * 7.6 > 10.94 & \therefore n = 11 \end{array}$$

$$c = (a+b)/2 = (1+2)/2 = 1.5 > 0$$

	а	b	с
X	0	2	1.5
<i>f(x)</i>	-1	5	0.875

Root Finding(Bisection Method Cont ...)

n	a	f(a)	b	<i>f</i> (<i>b</i>)	$c = \frac{a+b}{2}$	<i>f</i> (<i>c</i>)	Update
1	1	-1	2	5	1.5	0.875	b = c
2	1	-1	1.5	0.875	1.25	-0.29688	a = c
3	1.25	-0.29688	1.5	0.875	1.375	0.22461	b = c
4	1.25	-0.29688	1.375	0.22461	1.3125	-0.05151	a = c
5	1.3125	-0.05151	1.375	0.22461	1.34375	0.08261	<i>b</i> = <i>c</i>
6	1.3125	-0.05151	1.34375	0.08261	1.32812	0.01458	b = c
7	1.3125	-0.05151	1.32812	0.01458	1.32031	-0.01871	a = c
8	1.32031	-0.01871	1.32812	0.01458	1.32422	-0.00213	a = c
9	1.32422	-0.00213	1.32812	0.01458	1.32617	0.00621	b = c
10	1.32422	-0.00213	1.32617	0.00621	1.3252	0.00204	<i>b</i> = <i>c</i>
11	1.32422	-0.00213	1.3252	0.00204	1.32471	-0.00005	a = c

Example-2 By using Bisection method find the root for $f(x)=x^3-x-1$ in the interval [1,2]

Approximate root of the equation x^3 -x-1=0 using Bisection method is 1.32471

