
6/27/2022

1

Lecture:

By: Zahra A. Elashaal

We now consider how MATLAB can be used to repeat an operation many times and how decisions
are taken.

Loops Structures

• The basic MATLAB loop command is for and it uses the idea of repeating an operation for all the
elements of a vector. A simple example helps to illustrate this:

% looping.m

%

N = 5;

for ii = 1:N

disp([int2str(ii) ’ squared equals ’ int2str(iiˆ2)])

end

This gives the output

1 squared equals 1

2 squared equals 4

3 squared equals 9

4 squared equals 16

5 squared equals 25

6/27/2022

2

• The start of the for loop on the third line tells us the variable j is to run
from 1 to 10 (in steps of the default value of 1), and the commands in the
for loop are to be repeated for these values.

Example 3.2 The following code prints out the value of the integers from 1
to 20 (inclusive) and their prime factors. To calculate the prime factors of an
integer we use the MATLAB command factor

str = ’ times seven is ’;

for j = 1:10

x = 7 * j ;

disp([int2str(j) str int2str(x)])

end

for i = 1:20

disp([i factor(i)])

end

1 1

2 2

3 3

4 2 2

5 5

6 2 3

7 7

8 2 2 2

9 3 3

10 2 5

11 11

12 2 2 3

13 13

14 2 7

15 3 5

16 2 2 2 2

17 17

18 2 3 3

19 19

20 2 2 5

Example 3.1 The following code writes out the seven times table up to ten
times seven.

The values for which the for loop is evaluated do not need to be specified inline, instead they could
be set before the actual for statement. For example

• displays the elements of the vector r one at a time, that is 1, 4, 7, 10, 13, 16 and 19;

Example 3.3 Suppose we want to calculate the quantity six factorial (6! = 6 × 5 × 4 × 3 × 2 × 1)
using MATLAB.

• One possible way is

r = 1:3:19;

for ii = r

disp(ii)

end

fact = 1;

for i = 2:6

fact = fact * i;

end

6/27/2022

3

Example 3.4 Calculate the expression nCm for a variety of values of n and m. This is read as ‘n
choose m’ and is the number of ways of choosing m objects from n. The mathematical expression
for it is

• We could rush in and work out the three factorials in the expression, or we could try to be a little
more elegant. Let’s consider n!/(n − m)! = n×(n−1)×(n−2)×· · ·×(n−m+1). We can therefore use
the loop structure.

prod = 1;

mfact = 1;

for i = 0:(m-1)

mfact = mfact * (i+1);

prod = prod * (n-i);

end

soln = prod/mfact;

soln = 1;

for i = 0:(m-1)

soln = soln * (n-i) / (i+1);

end

%This product could also be written as:

soln = 1;

for i = 0:(m-1)

soln = soln * (n-i) / (m-i);

end

Breaking up the

calculation like this can

lead to problems for

large values of m and so

it is often best to work

out the answer directly:

Example 3.5 Determine the sum of the geometric
progression

total = 0

for n = 1:6

total = total + 2ˆn;

end

Summing Series
In the Example we have summed a
series: we now describe this topic in
more detail. We start by constructing a
code to evaluate.

N = input(’Enter the number of terms required: ’);

s = 0;

for i = 1:N

s = s + iˆ2;

end

disp([’Sum of the first ’ int2str(N) ... ’ squares is ’ int2str(s)])

• which gives the answer 126,

• This is accomplished using the code:

6/27/2022

4

Sums of Series of the Form

% Summing series

N = input(’Please enter the number of terms required ’);

p = input(’Please enter the power ’);

sums = 0;

for j = 1:N

sums = sums + jˆp;

end

disp([’Sum of the first ’ int2str(N) ... ’ integers raised to the power ’ int2str(p) ’ is ’ int2str(sums)])

From (1) we see that c = 1−a−b and this can be
substituted into the other two equations to yield:

N = 1 a + b + c = S1 = 1, (1)

N = 2 4a + 2b + c = S2 = 1+2 = 3, (2)

N = 3 9a + 3b + c = S3 = 1 + 2 + 3 = 6. (3)

3a + b = 2, (4)

8a + 2b = 5. (5)

Now using (4) in (5) we find a = 1/2 and then in (4), b = 1/2 and finally using (1) we have c = 0.
Hence

• We assume that SN = aN2 + bN + c and use the three
values above to give three simultaneous equations from
which we can determine the coefficients a, b and c,
these equations are:

• We note the formula when p = 1 is given by σ𝑗=1
𝑁 𝑗1 = N(N + 1)/2.

• If we substitute in the values N = 1, N = 2 and N = 3 (all for p = 1) we would obtain 3 points
on the ‘curve’ and these will uniquely determine its coefficients (assuming it is a quadratic).

It seems reasonable to expect that the sum for a certain power of p will be of degree p+1. In order to
determine the coefficients of a polynomial of degree p + 1 we require p + 2 points.

6/27/2022

5

It seems reasonable to expect that the sum for a certain power of p will be of degree p+1. In order to
determine the coefficients of a polynomial of degree p + 1 we require p + 2 points.

clear all

format rat

p = input(’Please enter the power you require ’);

points = p+2;

n = 1:points;

for N=n

sums(N)=0;

for j = 1:N

sums(N) = sums(N) + jˆp;

end

end

[coe] = polyfit(n,sums,p+1)

format

polyfit(x,y,n) which returns the coefficients of

order n through the points in (x, y).

For the examples p = 2 and p = 3 we have

>> sumser2

Please enter the power you require 2

coe = 1/31/21/6

>> sumser2

Please enter the power you require 3

coe = 1/41/21/4

The series for p=2 and p=3 are:

MATLAB is very good at this type of exercise. Consider the previous example

• Firstly we set up a vector running from one to ten: i = 1:10;

• and now a vector which contains the values in i squared: i_squared = i.ˆ2;

• Now we use the MATLAB command sum to evaluate this:

• value = sum(i_squared)

• The full code for this example is

• This can all be contracted on to one line sum((1:10).ˆ2): you should make sure you know how this
works!

• Using the command sum allows us to simplify our codes: however it is essential we understand
exactly what it is doing.

i = 1:10;

i_squared = i.ˆ2;

value = sum(i_squared)

6/27/2022

6

Example 3.9 Calculate the summations

for ii = 1:3

for jj = 1:3

a(ii,jj) = ii*jj;

end

end

N = 6;

for p = 1:3

sums(p) = 0.0;

for j = 1:N

sums(p) = sums(p)+jˆp;

end

end

disp(sums)

• Many algorithms require us to use nested loops (loops
within loops), as in the example of summing series. We
illustrate this using a simple example of constructing an
array of numbers:

• Notice that the inner loop (that is, the one in terms of
the variable jj) is executed three times with ii equal to
1, 2 and then 3.

𝑎 =
1 2 3
2 4 6
3 6 9

21 91 441

output

a < b True if a is less than b

a <= b True if a is less than or equal to b

a > b True if a is greater than or equal to b

a >= b True if a is greater than or equal to b

a == b True if a is equal to b

a ∼= b True if a is not equal to b

More often than not we will need to form compound statements,

comprising more than one condition.

This is done by using logical expressions, these are:

and(a,b) a & b Logical AND

or(a,b) a | b Logical OR

not(a) ∼a Logical NOT

xor(a,b) Logical exclusive OR

MATLAB has a very rich vocabulary when it comes to conditional operations but we shall start with
the one which is common to many programming languages.

• This is the if command which takes the form => if (expression)

commands

...

end

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

A B C XOR

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

exclusive OR is odd gate

6/27/2022

7

x>1 & x<2
This is the open set (1, 2).

x<0 | x>=1
the set is (−∞, 0) ∪ [1,∞).

x>1 | x<2
the answer is (−∞,∞).

x<=1 | x>=1
the answer is (−∞,∞).

x<=1 & x>=1
The answer is the single value one, written as {1}.

∼(x>2)
that is the set (−∞, 2].

(x>1) & (∼(x<2))
the solution is [2,∞).

abs(x-1) < 2
that is (−1, 3).

Example 3.10 Determine the sets for which these statements are true; where X represent the x axes.

0 1 2-1-2
x axes

We shall now actually construct logical arguments which can be used in if statements.

Example 3.11 Let us consider a command which is only executed if a value x lies between 1 and 2 or
it is greater than or equal to 4. We shall try to describe the thought processes involved:

• In order that a value lies between one and two, it has to be greater than one AND less than two, so
this component is written as:

(x>1) & (x<2)

((x>1) & (x<2)) | (x>=4)

a = and(x>1,x<2);

b = (x>=4);

c = or(a,b)

• If x is greater than or equal to 4, which is written simply as x>=4.

• Finally, we need to combine these conditions and this is done using the logical operation OR,
since the value of x could lie in one or the other of the regions.

• Hence we have

• We could use the commands in a different form
by making use of the AND and OR commands.

Notice here we have actually set “Boolean”

variables a, b and c (in fact they are only normal

variables which take the values zero or one).

6/27/2022

8

• It is convenient at this stage to introduce some of the other commands which are available to us
when constructing conditional statements, namely if and elseif.

• The general form of these is given by: if (expression)

commands ...

elseif (expression)

commands ...

else

commands ...

end

str = ’Divisible by ’;

x = input(’Number to test: ’);

for j = 2:9

if rem(x,j) == 0

disp([str int2str(j)])

end

end

Example 3.12 Consider the following
piece of code which determines which
numbers between 2 and 9 go into a
specified integer exactly:

Example 3.13 Here we construct a conditional
statement which evaluates the function:

if x >= 0 & x <= 1

f = x;

elseif x > 1 & x <= 2

f = 2-x;

else

f = 0;

end

if raining

if money_available > 20

party

elseif money_available > 10

cinema

else

comedy_night_on_telly

end

else

if temperature > 70 & money_available> 40

beach_bbq

elseif temperature > 70

beach

else

you_must_be_in_the_UK

end

end

Example 3.14 (Nested if statements) The ideas

behind nested if statements is made clear by the

following example

One of the possible solutions to this problem is:

6/27/2022

9

The MATLAB Command switch takes the form:

switch switch_expr

case case_expr1

commands ...

case {case_expr2,case_expr3}

commands ...

otherwise

commands ...

end

switch lower(METHOD)

case {’linear’,’bilinear’}

disp(’Method is linear’)

case ’cubic’

disp(’Method is cubic’)

case ’nearest’

disp(’Method is nearest’)

otherwise

disp(’Unknown method.’)

end

The example given in the
manual documentation
for this command:

msg = ’Enter first three letters of the month: ’;

month = input(msg,’s’);

month = month(1:3); % Just use the first three letters

if lower(month)==’feb’

leap = input(’Is it a leap year (y/n): ’,’s’);

end

switch lower(month)

case {’sep’,’apr’,’jun’,’nov’}

days = 30;

case ’feb’

switch lower(leap)

case ’y’

days = 29;

otherwise

days = 28;

end

otherwise

days = 31;

end

Example for switch command

Suppose we now want to repeat a loop until a
certain condition is satisfied. This is achieved
by making use of the MATLAB command
while, which has the syntax

while (condition)

commands...

end

x = 1;

while xˆ3 < 2000

disp(xˆ2)

x = x+1;

end

value = floor((2000)ˆ(1/3))ˆ2;

Example 3.16 Write out the values of x2 for all
positive integer values x such that x^3 < 2000.
To do this we will use the code

Example 3.17 Consider the one-dimensional map:

which are xn = ±√3. We can use the code

subject to the initial condition xn = 1. Let’s

determine what happens as n increases.

We note that the fixed points of this map, that is

the points where xn+1 = xn, are given by the

solutions of the previous equation:

xold = 2; xnew = 1;

while abs(xnew-xold) > 1e-5

xold = xnew;

xnew = xnew/2+3/(2*xnew);

end

This checks to see if xn+1 = xn to within a certain tolerance.

This procedure gives a reasonable approximation to √3 and

would improve if the tolerance (1e-5) was reduced.

6/27/2022

10

This allows loops to stop when certain conditions are met. For instance, consider the loop structure:

x = 1;

while 1 == 1

x = x+1;

if x > 10

break

end

end

• The loop structure while 1==1 ... end is very dangerous since this can give rise to
an infinite loop, which will continue to infinity;

• however the break command allows control to jump out of the loop.

warning error

• MATLAB gives us three very useful commands in this
context: break, warning and error. The latter two
commands allow us to either warn the user of a problem
or actually stop the code because of an irretrievable
problem, respectively.

• Both the commands warning and error are used with an
argument, which is displayed when the command is
encountered.

if code_fails

error(’ Irretrievable error ’)

elseif code_problem

warning(’ Results may be suspect ’)

end

msg = ’Please enter a positive integer: ’;

msg0 = ’You entered zero’;

msg1 = ’You failed to enter an integer’;

msg2 = ’You entered a negative integer’;

x = input(msg);

if x==0

error(msg0)

end

if round(x)˜= x

error(msg1)

end

if sign(x)==-1

warning(msg2)

x = -x;

end

disp(factor(x))

Example 3.20 Let’s now write a code which asks the user
for an integer and returns the prime factors of that integer.

To this point we have assumed the data made available to a code is suitable;

6/27/2022

11

Any Question?

