
Dart Abstract Classes

Abstract classes are the classes in Dart that has one or more abstract method. Abstraction is a part
of the data encapsulation where the actual internal working of the function hides from the users.
They interact only with external functionality. We can declare the abstract class by using the
abstract keyword. There is a possibility that an abstract class may or may not have abstract
methods.

Rules for Abstract classes:

1.An abstract class can have an abstract method (method without implementation), or not.

2. If there is at least one abstract method, then the class must be declared abstract.

3.The object of the abstract class cannot be created, but it can be extended.

4.An abstract keyword is used to declare the abstract class.

5.An abstract class can also include normal or concrete (method with the body) methods.

6.All abstract methods of parent class must be implemented in the subclass.

Declaring Abstract Class

An abstract keyword followed by a class name is used to declare the abstract class. An abstract class

mostly used to offer a base for the subclass to extends and implement the abstract method.

abstract class ClassName {
// Body of abstract class

}

we have a class Person that has method displayInfo(), and we have two sub classes of
it Boy and Girl. Each of the person information varies from the other person, so there is no benefit
to implementing the displayInfo() in the parent class. Because every subclass must override the
parent class method by provides its own implementation. Thus, we can force the subclass to
provide implementation to that method, so that is the benefit to make method abstract. We don't
require the give implementation in the parent class.

abstract class Person {

 void displayInfo(); //abstract method
}

class Boy extends Person {
 void displayInfo() {
 print("My name is Mike");
 }
}
class Girl extends Person {
// Overriding method
 void displayInfo() {
 print("My name is Eve");
 }
}
void main() {
 Boy b = new Boy(); // Creating Object of Boy class
 Girl g = new Girl(); // Creating Object of Girl class

 b.displayInfo();
 g.displayInfo();
}

Dart Interfaces
An interface defines the syntax that any entity must adhere to. Dart does not have
any separate syntax to define interfaces. An Interface defines the same as the class
where any set of methods can be accessed by an object. The Class declaration can
interface itself.
The keyword implement is needed to be writing, followed by class name to be able to
use the interface. Implementing class must provide a complete definition of all the
functions of the implemented interface. We can say that a class must define every
function with the body in the interface that we want to achieve.

Declaring an Interface
Dart doesn't provide syntax for declaring interface directly. Implicitly, a class
declaration itself an interface containing the entire instance member of the class and
of any interfaces it implements.

Implementing an Interface
To work with interface methods, the interface must be implemented by another class using

the implements keyword. A class which is implemented the interface must provide a full

implementation of all the methods that belongs to the interface. Following is the syntax of the

implementing interface. class ClassName implements InterfaceName

class Employee {
 void display() {
 print("I am working as an engineer");
 }
}
class Engineer implements Employee {
 void display() {
 print("I am an engineer in this company");
 }
}
void main() {
 Engineer eng = new Engineer();
 eng.display();
}

Implementing Multiple Inheritance
We have discussed previously that the multiple inheritance is not supported by the Dart, but we can
apply the multiple interfaces. We can say that, using multiple interfaces, we can achieve multiple
inheritance in Dart. The syntax is given below.
Syntax:
 class ClassName implements interface1, interface2,…interface n

class Student {
 String? name;
 int? age;
 void displayName() {
 print("I am ${name}"); }
 void displayAge() {
 print("My age is ${age}"); } }
class Faculty {
 String dep_name = '';
 int salary = 0;
 void displayDepartment() {
 print("I am a professor of ${dep_name}"); }
 void displaySalary() {
 print("My salary is ${salary}"); } }

class College implements Student, Faculty {
 // Overriding Student class members
 String? name;
 int? age;
 void displayName() {
 print("I am ${name}"); }
 void displayAge() {
 print("My age is ${age}"); }
//Overriding each data member of Faculty class
 late String dep_name;
 late int salary;
 void displayDepartment() {
 print("I am a professor of ${dep_name}"); }
 void displaySalary() {
 print("My salary is ${salary}"); }
}

void main() {
 College cg = new College();
 cg.name = "Ahmed";
 cg.age = 25;
 cg.dep_name = "Data Structure";
 cg.salary = 50000;
 cg.displayName();
 cg.displayAge();
 cg.displayDepartment();
 cg.displaySalary();
}

Rules for Implementing Interfaces

1. A class that implements the interface must override every method and instance variable of an
interface.

2. Dart doesn't provide syntax to declare the interface directly. The class declaration can consider as
the interface itself.

3. An interface class must provide the full implementation of all the methods belong to the interfaces.

4. We can implement one or more interfaces simultaneously.

5. Using the interface, we can achieve multiple inheritance.

Dart mixins

A mixin is a class with methods and properties utilized by other classes in Dart.

It is a way to reuse code and write code clean.

To declare a mixin, we use the mixin keyword:

mixin Mixin_name{

}

Mixins, in other words, are regular classes from which we can grab methods (or variables) without

having to extend them. To accomplish this, we use the with keyword.

mixin Bark {
 void bark() => print('Barking');
}

mixin Fly {
 void fly() => print('Flying');
}
mixin Crawl {
 void crawl() => print('Crawling');
}
class Animal {
 void breathe() {
 print("Breathing");
 }
}
class Dog extends Animal with Bark {}
class Bat extends Animal with Fly {}
class Snake extends Animal with Crawl {
 void display() {
 print(".....Snake.....");
 breathe();
 crawl();
 }
}

main() {
 var dog = Dog();
 dog.breathe();
 dog.bark();

 var snake = Snake();
 snake.display();
}

Note: A mixin cannot be instantiated.

Breathing
Barking
.....Snake.....
 Breathing
Crawling

Access Modifiers in Dart

One of the key features of Dart is its access modifiers, which allow developers to
control the visibility and accessibility of class members. Access modifiers provide a
way to protect the internal state of an object and prevent unwanted modifications.

Types of Access Modifiers in Dart

Dart supports three types of access modifiers:

1.public

2.private

3.extension

1. Public Access Modifier

The public access modifier is the default access level in Dart. It is applied to all class

members that do not have an explicit access modifier. A public class member can be

accessed from any code within the same package or library.

class Person {
 String name = '';
 int age = 0;
 void greet() {
 print('Hello, my name is $name and I am $age years old.');
 }
}
void main() {
 var person = Person();
 person.name = 'Omer';
 person.age = 30;
 person.greet();
}

In this example, the

name, age, and

greet() members of

the Person class are

all public. They can

be accessed from

the main() function,

which is also in the

same package.

2. Private Access Modifier

The private access modifier is used to restrict access to class members within the

same library. A private class member is denoted by prefixing its name with an

underscore character (_).

class Person {
 String _name = '';
 int _age = 0;
 void _greet() {
 print('Hello, my name is $_name and I am $_age years old.');
 }
 void introduce() {
 _name = 'Omer';
 _age = 30;
 _greet();
 }
}
void main() {
 var person = Person();
 person.introduce();
}

In this example, the

name, age, and

greet() members of

the Person class are

all private. They can

only be accessed

from within the

Person class. The

introduce() method

is public and can be

accessed from the

main() function,

which is also in the

same library.

3. Extension Access Modifier

The extension access modifier was introduced in Dart 2.6 and is used to add

functionality to an existing class without having to modify the class itself. An

extension can add new methods and properties to a class, even if the class is final

or comes from a third-party library.

extension IntExtensions on int {
 bool isEven() => this % 2 == 0;
 bool isOdd() => this % 2 == 1;

}

void main() {
 var number = 3;
 print(number.isEven); // false
 print(number.isOdd); // true

}

In this example, we create an

extension called IntExtensions on

the int class. The extension adds

two new methods isEven() and

isOdd() that can be used on any

int value.

Dart types of variables

• Top-level variables

• Static variables

• Instance variables

• Local variables

Top-Level variables

Top-level variables are variables that are not linked to any class and that can be accessed
from anywhere else in your program.

Static variables

Static variables are variables that are related to the class. (mostly called class variables). That
is a member variable of a given class that is shared across all instances (objects).

void main() {
 print(A.id);
}

class A {
 static int id =
0;
}

Instance variables

Instance variables are variables that are defined in the class, for which each instantiated object
of that class has a separate copy or instance of the variables.

void main() {
 Car toyota = Car(color: 'Red',
model: 'RAV4');
 Car nissan = Car(color:
'Yellow', model: 'Altima');
 print(toyota.model); // RAV4
 print(nissan.model); // Altima
}

class Car {
 String? color;
 String? model;
 Car({this.color, this.model});
}

Local variables

Local variables are variables that only exist within a local scope meaning they can only exist only
within the local context of a function or method.

void main(List<String> args) {
 print(calculate(4));

}

int calculate(int number) {
 int x = 5;
 return x + number;

}

In the above example, the variables number and x are local variables, which means they can
only with the local scope of the function calculate. After the calculate function executes, the
local variables will no longer exist

Late variables

Non-nullable variables must be initialized. This scenario can be walked around with
the late keyword. This permits non-nullable variables to hold a null value until it is
initialized. This may throw a runtime error if you fail to initialize before it is used.

late String name;

void main() {

 name= 'Hello Mr.Arc';

 print(name);

}

The above line of code is perfectly correct, the late keyword lets us initialize the non-
nullable variable after but before it is been used, else it will throw an exception.

https://www.javatpoint.com/compile-time-vs-runtime

In dart, type annotations are options, that is;

int number= 5;

can be written as;

var number = 5 or dynamic number = 5;

This is because the type can be inferred at compile time using the var keyword or at runtime
using the dynamic keyword.

var

With var, after the variable is set, can not be changed to a different type.

Once the variable age is set, can no longer hold any data type except with any value of the type
it was initially set with.

var age = 34;

age =50;

age =80;

if you try changing the type of age, in the program, it will lead to an error. say we tried to
change it to a value of type string (“Hello”)

Dynamic

With dynamic, after the variable is set, it can be changed to a different type. The value is only the exact

value of the variable that is only known at runtime. Example;

the following is all correct using the dynamic keyword.

dynamic desc = 5;

desc =”Hello”;

desc = 6.7;

desc = [1,2,3,4,5,6];

desc = {4:”yes”, 7:”Arc”,9:”we can”}

All the above initialization and assignment are all accepted.

Final and const

These keywords are used to make the value of a variable fixed through out the code base. That means

once the variable is set the state can not be altered or changed.

Final

The final keyword is used to make the value of a variable fixed and it can not be altered in the future.

Final variable will have known at runtime

Example:

final age = 29;

final String name = “MrArc”;

The program will through a runtime error if you try to change the value of the variable example;

age = 100; //error

Const

The const keyword work exactly like the final keyword. the only difference between final and
const is that the variable compile time constants only, which means the value needs to be know
before the code is converted to executable code.

Const variables only take constant values or literals.

Example:

const currentYear= 2022;

const int years = currentYear — 1996;

The above code is correct and will cause no error.

 Note the value of the variable maybe known at compile time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

