
6/21/2022

1

Lecture 5

• In many problems we are required to determine when a function is zero.

• We now re-introduce the Matlab function feval which may seem a little like an extra step, but it
will enable us to write more general codes. This function has the syntax feval(f,x1,...,xn).

feval(’sin’,0.3)

feval(’mycode’,0.2,0.3)

Initial Estimates

• In order to determine a root it is usually essential to have an initial estimate of its value. In some
cases you may have more than one root (or none) and you wish to identify which one you are
concerned with.

• In general the methods we will consider will require either an initial guess for the root or a
bracketing interval containing a root.

In the first example this gives sin(0.3)

and in the second it returns the value Of mycode(0.2,0.3).

6/21/2022

2

We will use the graphical capabilities of Matlab to identify
the root (or this bracketing interval).

• Firstly, we shall set up a small m-file called userfn.m,
which will used to specify an example function.

function [value] = userfn(x,par1,par2)

value = x-par1*sin(x.ˆpar2);

x = -2.0:0.01:2.0;

y = feval(’userfn’,x,2,2);

plot(x,y)

grid on

• From this initial figure it is not that clear where the zeros lie. There appears to be one at the origin, which we
can see straight away from consideration of the function, f(x) = x − 2 sinx2.

• By adding the command grid on (either to the programme testplot.m or at the command line) we can see
two additional zeros (one near 0.5 and another near 1.5)

• This gives f(x) = x − α1 sin xα2 where α1 and α2 are
parameters, which the user will specify.

• Now in order to plot the
function we select a range
and use the plot command.
The commands are

• In order to investigate further we use the zoom on
command. By clicking the left-hand mouse button we can
enlarge areas of the figure, and using the right-hand button
we can pull back. Typing zoom off disables this feature.

• This can give us a good idea of where the roots lie.

• Notice this command is only working using the original
data and if we zoom too close we will be able to see the
straight line segments used for the plotting. (401 points).

% Modified testplotm.m

x = -2.0:0.01:2.0;

y = feval(’userfn’,x,2,2);

disp(’Click the mouse near the zero’)

disp(’and when you have finished press’)

disp(’the return key’)

plot(x,y)

grid on

[xvalues,yvalues] = ginput

[yy,ii] = min(abs(yvalues));

disp(xvalues(ii))

We can now use
another command
ginput to actually
return a value rather
than just using our
eyes. The syntax we
will exploit is

• The first few lines are the same as testplot.m and the next

line uses the command ginput. The way ginput works is to

allow the user to select points in the window (using a cross

hair) by clicking one of the mouse buttons. This is

terminated by pressing the return button.

• The results are stored in the arrays xvalues and yvalues;

these essentially contain the x and y coordinates of all the

points which the user clicks.

• The next command finds the minimum value of the function

and its integer location within the array.

• Finally the value of x at this location is displayed. This gave

a guess of 0.4977 for the zero near 0.5 and 1.4931 for the

zero near 1.5.

6/21/2022

3

Example 4.1 Determine initial estimates for the zeros of the function f(x) =x sin x − √ x between 0 and 10.

• Firstly we construct the Matlab code:

function [value] = userf1(x)

value = x.*sin(x)-sqrt(x);

• and now run the commands

>> x = linspace(0,10);

>> y = feval(’userf1’,x);

>>plot(x,y)

>>grid on

which yield the next figure =>

• We can see that there are zeros at 0 and near 1.2,
2.5, 6.7 and 9.3.

• We could use the above data set but it would seem
sensible to consider each point separately.

• For this purpose we use the code on the next slide:

6/21/2022

4

a = input(’Start of interval ’);

b = input(’End of interval ’);

x = linspace(a,b);

y = feval(’userf1’,x);

clf

plot(x,y)

grid on

zoom on

• Running this code with the inputs 1 and 2,
we obtain:

• For this purpose we use the code:

• after successive clicks of the left mouse button. This allows us to obtain a better estimate of the root, namely
1.175.

• You should try this interval and repeat the exercise for the other roots.

• In reality you should plot the function and then use a combination of the grid and zoom commands to obtain
estimates for the root or intervals which contain them. This also helps to ensure that the answers you obtain
are sensible.

6/21/2022

5

Fixed point : A point, say, s is called a fixed point if it satisfies the equation x = g(x).

Fixed point Iteration : The transcendental equation f(x) = 0 can be converted algebraically into the form
x=g(x) and then using the iterative scheme with the recursive relation xi+1= g(xi) ; i = 0, 1, 2, . . .

• with some initial guess x0 is called the fixed point iterative scheme.

Algorithm - Fixed Point Iteration Scheme

• Given an equation f(x) = 0

• Convert f(x) = 0 into the form x = g(x)

• Let the initial guess be x0

• Do
xi+1= g(xi)

while (none of the convergence criterion C1 or C2 is met)

• C1. Fixed a priori the total number of iterations N .

• C2. By testing the condition | xi+1 - g(xi) | < tolerance
limit (where i is the iteration number), say epsilon, fixed a priori.

Condition for Convergence:

• If g(x) and g'(x) are continuous on an
interval J about their root s of the
equation x = g(x),

• and if |g'(x)|<1 for all x in the
interval J then the fixed point iterative
process xi+1=g(xi), i = 0, 1, 2, . . .,

will converge to the root x = s for
any initial approximation x0 belongs to
the interval J .

Most of the techniques we will discuss are iterative in nature and the first one is called the fixed point

iteration scheme. Instead of looking for a zero of the function f(x), it determines a fixed point of an equivalent

equation.

• The equation is rewritten in the form x = g(x), so when x is substituted in the function g(x) it returns the
value x, hence the nomenclature fixed point.

The conversion of the equation f(x) = 0 into one of the form x = g(x) is not always straightforward and
definitely can be done in many ways.

• For instance the previous example, for which f(x) = x − 2 sin x2 could be rewritten as

x = 2sin x2 (where g(x) = 2sin x2) or

• For instance consider the quadratic f(x) = x2 + 2x − 3, which could be manipulated to give

x = (3 − x2)/2 or x =√(3 − 2x).

• With these two forms neither of them seems to have any advantages over the other.

• Further the equation could be written as x = 3/(x+2) and so on.

6/21/2022

6

• which is a recursion formula. It starts with an initial guess, namely x0 (which may
be determined graphically or by another means).

• Just about the simplest code for this purpose would be >>

x0 = 1;

for j=1:10

x0 = g(x0);

end

• So, we have a routine g.m which defines the function g(x) and x0 = 1 is a suitable initial guess.

• This runs through the iterative process ten times. This kind of code presupposes that it is going to work and
will converge in ten steps (or an appropriate number).

what we mean by convergence?

• We could work out the value of the function f(x) at the current iterate as a check. We would require this to
be less than a certain tolerance (the accuracy to which we would expect to know the answer).

• Notice that this is slightly different to knowing the root to within a certain tolerance.

• Alternatively in this case the code may be deemed to be successful when the |xn+1 - xn | < certain tolerance.
In this case we have xn+1 ≈ xn ⇒ xn ≈ g(xn) ⇒ f(xn) ≈ 0.

Before we try to resolve this issue let us say how this is then implemented as a numerical scheme.

We rewrite the equation as

This tolerance reflects how well we want to know the answer

and the parameter maxits is how many times we are prepared to perform the iterations.

This is to eliminate problems with cases which don’t converge and hence cause infinite loops

% fixed.m

function [answer,iflag] = fixed(g,xinit)

global tolerance maxits

iflag = 0;

iterations = 0 ;

xnext = feval(g,xinit);

while (iterations<maxits) & abs(xnext-xinit)>tolerance

iterations = iterations + 1;

xinit = xnext;

xnext = feval(g, xinit);

end

if iterations == maxits

iflag = -1;

answer = NaN;

else

iflag = iterations;

answer = xnext;

end

% eqn.m

function [g] = eqn(x)

g = 2*sin(x.ˆ2);

%main function

% mfixed.m

global tolerance maxits

tolerance = 1e-4;

maxits = 30;

[root,iflag] = fixed(’eqn’,0.2);

switch iflag

case -1

disp(’Root finding failed’)

otherwise

disp([’ Root = ’ num2str(root) ...

’ found in ’ num2str(iflag) ’ iterations’])

end

6/21/2022

7

• We have exploited the new command global which allows variables to be used by any
routine which contains a global statement referring to the same variables, or a subset of
them.

• The code above is run and gives the result of ≈ 9 × 10−14 after only four iterations.

In order to identify the other roots (near 1/2 and 3/2) we must use guesses close to these values.

• Starting around 0.5 (for instance guesses of 0.4 and 0.6 lead to the code finding the root at
zero again).

• Starting close to the other root has a variety of outcomes: starting below it produces the zero
root, whereas above leads to the iterations diverging.

• The reason for this is linked to the derivative of g(x). In fact the errors are multiplied by
|g’(x)| at each iteration and if this value is greater than one, the method will fail.

o In this case we recall that g(x) = 2sinx2 so that:

• g'(x) = 4x cos x2 which when x = 12 equals 1.9378 and when x = 32 gives −3.7690.

• Near the origin the derivative is very small and consequently the technique works well.

The approximate error for this equation can be

determined using the error estimator

Example: Use simple fixed-point iteration to locate the root of 𝑓 𝑥 = 𝑒−𝑥 − 𝑥
Solution.: The function can be separated directly and expressed as: 𝑥𝑖+1 = 𝑒−𝑥𝑖

Starting with an initial guess of x0 = 0, this iterative equation can be applied to compute

Thus, each iteration brings the estimate closer

to the true value of the root: 0.56714329

6/21/2022

8

Convergence of

The concepts of convergence and divergence can

be depicted graphically. we graphed a function to

visualize its structure and behavior.

for the function 𝑓 𝑥 = 𝑒−𝑥 − 𝑥 An alternative

graphical approach is to separate the equation

into two component parts, as in 𝑓1 𝑥 = 𝑓2 𝑥
Then the two equations:

𝑦1 = 𝑓1 𝑥 and 𝑦2 = 𝑓2 𝑥 can be plotted

separately.

The x values corresponding to the intersections

of these functions represent the roots of f(x) = 0.

Convergence of

Iteration cobwebs depicting

convergence (a and b) and divergence

(c and d) of simple fixed-point

iteration.

Graphs (a) and (c) are called monotone

patterns, whereas (b) and (d) are called

oscillating or spiral patterns.

Note that convergence occurs when

|g’(x)| < 1. In other words,

convergence occurs if the magnitude of

the slope of g(x) is less than the slope

of the line f(x) = x.

Consequently, if |g’(x)| < 1, the errors

decrease with each iteration.

For |g’(x)| > 1, the errors grow.

6/21/2022

9

Example: Find a root of x4-x-10 = 0 by using fixed point iterative scheme

That is for g2 the iterative process is converging to 1.85558 with any initial guess.

• Consider another function g2(x) = (x + 10)1/4 and the fixed point iterative scheme
xi+1= (xi + 10)1/4 ; i = 0, 1, 2, . . . And let the initial guess x0 be 1.0, 2.0 and 4.0

• Consider g1(x) = x = 10 / (x3-1) and the fixed point iterative scheme xi+1= g(xi) so that xi+1=10 / (xi
3 -1), for

i = 0, 1, 2, . . . And let the initial guess x0 = 2.0

So, the iterative process with g1 gone into an infinite loop without converging.

• Consider g3(x) =(x+10)1/2/x and the fixed point iterative scheme

xi+1=(xi+10)1/2 /xi , i = 0, 1, 2, . . . let the initial guess x0 = 1.8,

The graphs Fig g1, Fig g2 and

Fig g3 demonstrates the Fixed

point Iterative Scheme with g1,

g2 and g3 respectively for some

initial approximations.

It's clear from the

-Fig g1, the iterative process

diverges (does not converge) for

any initial approximation.

-Fig g2, the iterative process

converges very quickly to the

root which is the intersection

point of y = x and y = g2(x) as

shown in the figure.

-Fig g3, the iterative process

converges but very slowly.

That is for g3 with any initial guess the iterative process is converging
but very slowly

• The Geometric interpretation of convergence with g1, g2 and g3

6/21/2022

10

HomeWork

1 Find a root of cos(x) - x * exp(x) = 0

2 Find a root of x4-x-10 = 0

3 Find a root of x-exp(-x) = 0

4 Find a root of exp(-x) * (x2-5x+2) + 1= 0

5 Find a root of x-sin(x)-(1/2)= 0

6 Find a root of exp(-x) = 3log(x)

Condition for Convergence:

E1: xn+1 = 1 + 0.5 sin xn

E2: xn+1 = 3 + 2 sin xn

for n = 0, 1, 2, ...

The solutions are

E1: α = 1.49870113351785

E2: α = 3.09438341304928

E1

E2

6/21/2022

11

Condition for Convergence :

In the earlier example.

• First consider E1: x = 1 + 0.5 sin x for i=0

• Here g(x) = 1 + 0.5 sin x We can take [a, b] with any a ≤ 0.5 and b ≥ 1.5.

• Note that g′(x) = 0.5 cos x ; |g’(x)| ≤ 1/2

• Therefore, we can apply the theorem and conclude that the fixed point iteration

• xn+1 = 1 + 0.5 sin xn will converge for E1.

Then we consider the second equation

• E2: x = 3 + 2 sin x

• Here g(x) = 3 + 2 sin x

• Note that g(x) = 3 + 2 sin x ; g′(x) = 2 cos x and g′(α) = 2 cos (3.09438341304928) = −1.998

• Therefore the fixed point iteration xn+1 = 3 + 2 sin xn will diverge for E2.

Any Question?

