
1

Creating a Starter Project

Template

2

CREATING AND ORGANIZING FOLDERS AND FILES

➢ Creating the Folder Structure

1. Creating a New App section, enter starter_exercise for the project name and click

Next.

1. Click the Terminal button at the bottom of the Vscode.

1. To create the folder structures, execute the mkdir –p folder/subfolder command. This mkdir

command creates a folder, and the –p parameter creates a folder and subfolder in one

run.

4

• Run each mkdir command in the Terminal window to create each folder structure . For

example

// From Terminal enter below commands

Mac:starter_exercise marco$ mkdir -p assets/images

Mac:starter_exercise marco$ mkdir -p lib/pages

Mac:starter_exercise marco$ mkdir -p lib/models

Mac:starter_exercise marco$ mkdir -p lib/utils

Mac:starter_exercise marco$ mkdir -p lib/widgets

Mac:starter_exercise marco$ mkdir -p lib/services

// From Windows Command Prompt enter below commands

F:\Pixolini\Flutter\starter_exercise>mkdir assets\images

F:\Pixolini\Flutter\starter_exercise>mkdir lib\pages

F:\Pixolini\Flutter\starter_exercise>mkdir lib\models

F:\Pixolini\Flutter\starter_exercise>mkdir lib\utils

F:\Pixolini\Flutter\starter_exercise>mkdir lib\widgets

F:\Pixolini\Flutter\starter_exercise>mkdir lib\services

5

6

• assets/images: The assets folder holds subfolders such as images, fonts, and

configuration files.

• lib/pages: The pages folder holds user interface (UI) files such as logins, lists of items,

charts, and settings.

• lib/models: The models folder holds classes for your data such as customer information

and inventory items.

• lib/utils: The utils folder holds helper classes such as date calculations and data

conversion.

• lib/widgets: The widgets folder holds different Dart files separating widgets to reuse through

the app.

• lib/services: The services folder holds classes that help to retrieve data from services over

the Internet.

7

• Creating the Dart Files and Widgets

Note: Delete all the contents of the main.dart file.

Let’s start by adding the code to the main.dart file and saving it.

1. Import the package/file. The default import is the material.dart library (To use the Cupertino

iOS-style widgets, import the cupertino.dart)

import 'package:flutter/material.dart’;

2. Leave a blank line and enter the main() function listed next. The main() function is the entry

point to the app and calls the MyApp class.

3. Type the MyApp class that extends StatelessWidget.

The MyApp class returns a MaterialApp widget declaring title, theme, and home properties.

home property calls the Home() class, which is created later in the home.dart file.

void main() => runApp(MyApp());

8

class MyApp extends StatelessWidget {

// This widget is the root of your application.

@override

Widget build(BuildContext context) {

return MaterialApp(

debugShowCheckedModeBanner: false,

title: 'Starter Template',

theme: ThemeData(

primarySwatch: Colors.blue,

),

home: Home(),

);

}

}

9

4. Create a new Dart file in the pages folder. Right-click the pages folder, select New ⇨

Dart File, enter home.dart, and click the Enter.

5. Like in step 1, import the material.dart package/file

import 'package:flutter/material.dart’

Start typing st and the autocompletion help opens. Select the stful abbreviation.

10

7. give the StatefulWidget class its name:Home.

// home.dart

import 'package:flutter/material.dart';

class Home extends StatefulWidget {

@override

_HomeState createState() => _HomeState();

}

class _HomeState extends State<Home> {

@override

Widget build(BuildContext context) {

return Container();

}

}

11

If the Home class does not need to keep state, then use StatelessWidget.

class Home extends StatelessWidget {

@override

Widget build(BuildContext context) {

return Container();

}

}

12

8. Replace the Container() widget with a Scaffold widget.

− The Scaffold widget implements the basic Material Design visual layout, allowing the simple

addition of AppBar, BottomAppBar, FloatingActionButton, Drawer, SnackBar, BottomSheet, and

more. (If this were a CupertinoApp, you could use either CupertinoPageScaffold or

CupertinoTabScaffold.)

class _HomeState extends State<Home> {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('Home'),

),

body: Container(),

);

}

}

13

The following is the full source code for both the main.dart and home.dart files:

1. lib/main.dart

// main.dart

import 'package:flutter/material.dart';

import 'package:ch4_starter_exercise/pages/home.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

// This widget is the root of your application.

@override

Widget build(BuildContext context) {

return MaterialApp(

debugShowCheckedModeBanner: false,

title: 'Starter Template',

theme: ThemeData(

primarySwatch: Colors.blue,

),

home: Home(),

);

}

}

14

2. lib/ home.dart

// home.dart

import 'package:flutter/material.dart';

class Home extends StatefulWidget {

@override

_HomeState createState() => _HomeState();

}

class _HomeState extends State<Home> {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('Home'),

),

body: Container(),

);

}

}

15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

