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Lecture 4 - Taylor Series

By: Zahra Elashaal

The Taylor series of a function is an infinite sum of terms that are expressed 
in terms of the function's derivatives at a single point.
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All the above expressions are actually a special 
case of Taylor series called the Maclaurin series.

Some examples of Taylor series which you must have seen

this can be written as:

The Maclaurin series for 1/(1 − x) is the 
geometric series

The Maclaurin series for the exponential function ex is:
The corresponding Taylor series for ln x at a = 1 is
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The general form of the Taylor series is given by
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provided that all derivatives of f(x) are continuous and exist in the interval 

[x, x+h] 

What does this mean in plain English?

As Archimedes would have said, “Give me the value of the function at a single

point, and the value of all (first, second, and so on) its derivatives at that single

point, and I can give you the value of the function at any other point”

Find the value of  6f given that   ,1254 f   ,744 f   ,304 f   64 f

and all other higher order derivatives of  xf at 4x are zero.
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Since the higher order derivatives are zero,
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Note that to find  6f

exactly, we only need the value of 

the function and all its derivatives at 

some other point, in this case 4x



6/4/2022

http://numericalmethods.eng.usf.edu 3

Find the value of ex using the first five terms of the Maclaurin series at x=0.25.

Solution

The first five terms of the Maclaurin series for is
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The exact value of   e0.25 up to 5 significant digits is also 1.2840.  
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Derive the Maclaurin series


!3!2

1
32 xx

xe x

The Maclaurin series is simply the Taylor 

series about  the point x=0
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the Maclaurin series is then
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where the remainder is given by
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that is, c is some point in the domain [x, x+h]

The Taylor polynomial of order n of a function

f(x) with (n+1) continuous derivatives in the

domain [x, x+h] is given by The Taylor series for ex at point 

x=0 is given by:
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It can be seen that as the number

of terms used increases, the error

bound decreases and hence a

better estimate of the function

can be found.

Example—error in Taylor 

series

Solution:

Using (n+1) terms of Taylor series gives 

error bound of
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How many terms would it require to get an approximation of e1 within a

magnitude of true error of less than 10-6.

So if we want to find out how

many terms it would require to

get an approximation of e1

within a magnitude of true error

of less than 10-6
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So 9 terms or more are needed to

get a true error less than 10-6

;
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Any Question? 


