
FLUTTER LAYOUTS

The main concept of the layout mechanism is the widget. We know that flutter assume everything as a

widget. So the image, icon, text, and even the layout of your app are all widgets. Here, some of the

things you do not see on your app UI, such as rows, columns, and grids that arrange, constrain, and

align the visible widgets are also widgets.

Flutter allows us to create a layout by composing multiple widgets to build more complex widgets.

For example, we can see the below image that shows three icons with a label under each one.

we can see the visual layout of the
above image. This image shows a
row of three columns, and these
columns contain an icon and label.

Types of Layout Widgets
We can categories the layout widget into two types:

Single Child Widgets
The single child layout widget is a type of widget, which can have only one child widget inside the
parent layout widget. These widgets can also contain special layout functionality. Flutter provides us
many single child widgets to make the app UI attractive.

Container: It is the most popular layout widget that provides customizable options for painting,
positioning, and sizing of widgets.

Padding: It is a widget that is used to arrange its child widget by the given padding. It
contains EdgeInsets and EdgeInsets.fromLTRB for the desired side where you want to provide
padding.

Center(
child: Container(

margin: const EdgeInsets.all(15.0),
color: Colors.blue,
width: 42.0,
height: 42.0,),)

const Greetings(
child: Padding(

padding: EdgeInsets.all(14.0),
child: Text('Hello!'),),)

SizedBox: This widget allows you to give the specified size to the child widget through all screens.

SizedBox(
width: 300.0,
height: 450.0,
child: const Card(child: Text('Hello JavaTpoint!')),

)

Center: This widget allows you to center the child widget within itself.

Align: It is a widget, which aligns its child widget within itself and sizes it based on the child's size. It
provides more control to place the child widget in the exact position where you need it.

Center(
child: Container(

height: 110.0,
width: 110.0,
color: Colors.blue,
child: Align(
alignment: Alignment.topLeft,
child: FlutterLogo(

size: 50,),),),)

AspectRatio: This widget allows you to keep the size of the child widget to a specified aspect ratio.

AspectRatio(
aspectRatio: 5/3,
child: Container(

color: Colors.bluel,),),

Baseline: This widget shifts the child widget according to the child's baseline.

child: Baseline(
baseline: 30.0,
baselineType: TextBaseline.alphabetic,
child: Container(

height: 60,
width: 50,
color: Colors.blue,),)

ConstrainedBox: It is a widget that allows you to force the additional constraints on its child widget.
It means you can force the child widget to have a specific constraint without changing the properties
of the child widget.

CustomSingleChildLayout: It is a widget, which defers from the layout of the single child to a
delegate. The delegate decides to position the child widget and also used to determine the size of
the parent widget.
FittedBox: It scales and positions the child widget according to the specified fit.

import 'package:flutter/material.dart';
void main() => runApp(MyApp());
class MyApp extends StatelessWidget {
// It is the root widget of your application.
@override
Widget build(BuildContext context) {

return MaterialApp(
title: 'Multiple Layout Widget',
debugShowCheckedModeBanner: false,
theme: ThemeData(

// This is the theme of your application.
primarySwatch: Colors.green,),

home: MyHomePage(),); } }
class MyHomePage extends StatelessWidget {

@override
Widget build(BuildContext context) {

return Scaffold(
appBar: AppBar(title: Text("FittedBox Widget")),
body: Center(
child: FittedBox(child: Row(
children: <Widget>[
Container(

child: Image.asset('assets/computer.png'),),
Container(

child: Text("This is a widget"),)],),
fit: BoxFit.contain,)),); } }

Multiple Child widgets
The multiple child widgets are a type of widget, which contains more than one child widget, and the
layout of these widgets are unique. For example, Row widget laying out of its child widget in a
horizontal direction, and Column widget laying out of its child widget in a vertical direction. If we
combine the Row and Column widget, then it can build any level of the complex widget.

Row: It allows to arrange its child widgets in a horizontal direction.

Center(
child: Container(

alignment: Alignment.center,
color: Colors.white,
child: Row(
children: <Widget>[
Expanded(

child: Text('Peter', textAlign: TextAlign.center),
),
Expanded(

child: Text('John', textAlign: TextAlign.center),
),

Expanded(
child: FittedBox(
fit: BoxFit.contain, // otherwise the logo will be tiny
child: const FlutterLogo(),

),

Column: It allows to arrange its child widgets in a vertical direction.

ListView: It is the most popular scrolling widget that allows us to arrange its child widgets one after
another in scroll direction.

GridView: It allows us to arrange its child widgets as a scrollable, 2D array of widgets. It consists of a
repeated pattern of cells arrayed in a horizontal and vertical layout.

Expanded: It allows to make the children of a Row and Column widget to occupy the maximum
possible area.

Table: It is a widget that allows us to arrange its children in a table based widget.

Flow: It allows us to implements the flow-based widget.

Stack: It is an essential widget, which is mainly used for overlapping several children widgets. It
allows you to put up the multiple layers onto the screen. The following example helps to understand
it.

class MyHomePage extends StatelessWidget {
@override
Widget build(BuildContext context) {

return Center(
child: Container(

alignment: Alignment.center,
color: Colors.white,
child: Stack(
children: <Widget>[

Container(
color: Colors.blue,),

Container(
color: Colors.pink,

 height: 400.0,
 width: 300.0,),

Container(
color: Colors.yellow,
height: 220.0,
width: 200.0,

)
],

),
),

);
}

}

	Slide 1: Flutter Layouts
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

