
5/21/2022

1

Lecture 2: Writing Scripts and Functions

By: Zahra Abdalla Elashaal

Chapter 1 Simple Calculations with Matlab.

Chapter 2 Writing Scripts and Functions.

Chapter 3 Loops and Conditional Statements.

Chapter 4 Root Finding.

Chapter 5 Interpolation and Extrapolation.

Chapter 6 Matrices.

Chapter 7 Numerical Integration.

Chapter 8 Solving Differential Equations.

Chapter 9 Simulations and Random Numbers.

Chapter 2 Writing Scripts and Functions.

1 Creating Scripts and Functions

1.1 Functions .

1.2 Brief Aside

2 Plotting Simple

2.1 Evaluating Polynomials and Plotting Curves

2.2 More on Plotting

3 Functions of Functions

4 Errors

4.1 Numerical Errors

4.2 User Error.

5 Tasks

5/21/2022

2

A script is simply a file containing the sequence of MATLAB commands which we wish to execute to
solve the task at hand; in other words a script is a computer program written in the language of Matlab.

• To invoke the MATLAB editor we type edit at the prompt. This editor has the advantage of
understanding MATLAB syntax and producing automatic formatting.

Example: We begin by entering and running the code:

a = input (’First number ’);

b = input (’Second number ’);

disp([’ Their sum is ’ num2str (a+b)])

disp([’ Their product is ’ num2str (a*b)])

We shall create our first script and save it in a file named

twonums.m .

MATLAB will have given this code the default name Untitled.m.

To execute the file twonums enter its name at the prompt of

the command window

contents of the file can be displayed by typing

type twonums.

Example has three new commands, input ,

num2str and disp

The input command prompts the user with the

flag contained within the quotes ’ ’ and takes the

user’s response from the standard input,

The second command num2str stands for

number-to-string

This is then displayed using the disp.

Use either the command help or the command which in combination with the filename, for instance
help load or which load for the Matlab command load.

Example: If we create a MATLAB file called power.m using the editor it can be saved in the current directory:

however the code will not work. The reason for this can be seen by typing which power which produces the

output

to check that you are in the correct directory use the command pwd to ‘print working directory’

You can also list the files in the current directory by typing dir or alternatively all the available MATLAB files can

be listed by using what: for more details see help what.

>> which power

power is a built-in function.

So MATLAB will try to run the built-in function.

Important Point

• It is very important you give your files a meaningful

name and that the files end with .m.

• You should avoid using filenames which are the same

as the variables you are using and which coincide with

Matlab commands.

• Make sure you do not use a dot in the body of the

filename and that it does not start with a special

character or a number.

5/21/2022

3

Functions are codes take inputs and return outputs.

As the next example and we will save as xsq.m.

function [output] = xsq(input)

output = input .^ 2;

- The first line of xsq.m tells us this is a function called xsq which takes an input called input and

returns a value called output. The input is contained in round brackets, and the output is contained

within square brackets. It is crucial for good practice that the name of the function xsq

corresponds to the name of the file xsq.m (without the .m extension).

- The second line is to calculate the square of the value of the input, and storing this result in the

variable output. Notice that the function uses dot arithmetic .^ so that this function will work with

both vector and matrix inputs (performing the operation element by element).

>> x = 1:10;

>> y = xsq(x)

The variables input and output are local variables that are used by the

function; they are not accessible to the general Matlab workspace.

>> A = [1 2 3 4 5 6];

>> y = xsq(A)

y = 1 4 9 16 25 36

You can know about variables by typing:

who, which lists all variables in use, or

whos, which lists all variables along with size and type.

Example Suppose we want to plot contours of a

function of two variables z = x2 + y2. We can use

the code

function [output] = func (x, y)

output = x.^2 + y.^2;

x = 0.0:pi/10:pi;

y = x;

[X,Y] = meshgrid(x,y);

f = func(X,Y);

contour(X,Y,f)

axis([0 pi 0 pi])

axis equal

should be saved in the file func.m.

the vectors x and y must have the same size

To plot the contours (that is the level curves) of the function

5/21/2022

4

Example Suppose we now want to construct the

squares and cubes of the elements of a vector.

function [sq, cub] = xpowers (input)

sq = input.^2;

cub = input.^3;

x = 1:10;

[xsq, xcub] = xpowers (x);

This function file must be saved as xpowers.m and it

can be called as follows:

Notice that: when the function is called we must

know what form of output we expect, whether it be a

scalar, a vector or a matrix. The expected outputs

should be placed within square brackets.

Example a function can have multiple inputs and outputs:

function [out1,out2] = multi(in1,in2,in3)

out1 = in1 + max(in2,in3);

out2 = (in1 + in2 + in3)/3;

x1 = 2; x2 = 3; x3 = 5;

[y1, y2] = multi(x1,x2,x3);

y1, y2

For this example we

obtain y1=7 and

y2=3.3333.

Example Consider a code which returns a scalar result

from a vector input.

function [output] = sumsq(x)

output = sum(x.^2);

x = [1 2 4 5 6];

y = sumsq(x)

sets y equal to the scalar 12 + 22 + 42 + 52 + 62 = 82.

Work with matrices in the previous example will also work with matrices:

>> A=[1 2 3; 4 5 6];

>> sumsq(A)
ans = 17 29 45

>> sum(A,1) % which is equivalent to sum(A)
ans = 5 7 9

>> sum(A,2) % to sum each row in (A)
ans = 6

15

This has exploited the property that the sum command sums the columns of a matrix. If we

want to sum the rows of a matrix we use sum(A,2), so that we have

5/21/2022

5

We start with the simplest command plot and use this

as an opportunity to revisit the ways in which functions

can be initialized. We start with initializing an array, in

this case x

x = 0:pi/20:pi;

the command size(x) gives the array size 1x21

and the command length(x) (gives the maximum

of the dimensions of a matrix).

We can plot simple functions, as:

plot(x, sin(x))

or more complicated examples such as:

plot(x, sin(3*x), x, x.^2.*sin(3*x)+cos(4*x))

which as we know sets up a vector whose elements are

(that is, a vector whose elements range from 0 to π in

steps of π/20).

y = 3*x-1;

plot(x,y)
y = x.^2+3;

plot(x,y)

Try these

x = -3:0.2:3;

y = x.^2+7*x-3;

grid on

plot(x,y)

Example To plot the quadratic x2+7x−3
from x equals −3 to 3 in steps of 0.2 we use
the code.

x = 0:pi/20:pi;

n = length(x);

r = 1:n/7:n;

y = x.^2+3;

plot(x,y,'b',x(r),y(r),'r*')

axis([-pi/3 pi+pi/3 -1 15])

xlabel('x values')

ylabel('Function values')

title('Demonstration plot','FontSize',24)

text(pi/10,0,'\alpha=\beta^2')

Example Consider the

code:.

Greek letters, using the

LATEX construction

\alpha for α and \beta

for β.

5/21/2022

6

There are a wide of other plotting options available. like

loglog(x,y) produces a log-log plot. Similarly semilogx and

semilogy produces a log plot for the x and y-axis, respectively.

You should also be aware of the commands clf which clears the

current figure and hold which holds the current figure.

x = linspace(-pi/2,pi/2,40);

y = x;

[X,Y] = meshgrid(x,y);

f = sin(X.^2-Y.^2);

figure(1)

contour(X,Y,f)

figure(2)

contourf(X,Y,f,20)

figure(3)

surf(X,Y,f)

The excellent features of MATLAB is the way in which it

handles two and three-dimensional graphics.

x = 3;

y = x^2+x+1;

disp(y)

Example a code to generate the value of a

specific quadratic x2 +x+1 at a specific point:

by typing help quadratic at the Matlab prompt to produce:

In general suppose we have the general quadratic

y = a2x
2 + a1x + a0.

The script to calculate this equation will call quadratic.m

% quadratic.m

% This program evaluates a quadratic

% at a certain value of x

% The coefficients are stored in a2, a1 and a0.

str = ’Please enter the ’;

a2 = input([str ’coefficient of x squared: ’]);

a1 = input([str ’coefficient of x: ’]);

a0 = input([str ’constant term: ’]);

x = input([str ’value of x: ’]);

y = a2*x*x+a1*x+a0;

% Now display the result

disp([’Polynomial value is: ’ num2str(y)])

quadratic.m

This programme evaluates a quadratic

at a certain value of x

The coefficients are stored in a2, a1 and a0.

Note it is also possible to obtain a complete listing of

the code by typing type quadratic at the prompt.

There are many ways of writing polynomials, for

instance this could have been written recursively as

a0 + x(a1 + xa2).

5/21/2022

7

% evaluate_poly.m

%

function [value] = evaluate_poly(x)

value = 3*x.^2+2*x+1;

Example we want to evaluate the quadratic

y = 3x2 + 2x + 1. We could then use the function

Now we can use the function evaluate_poly, in the

form evaluate_poly(2) or

x = 2; y = evaluate_poly(x).

Note: within Matlab we are able to call a function

with a variety of different inputs; whether this is valid

depends upon the structure of the function.

This is similar to the idea of overloading which is in

the object orientated languages like C++ and Java.

>> x = -5:0.5:5;

>> y = evaluate_poly(x);

>> plot(x,y)

we can now use our function to generate a vector

containing the polynomial values for x vector.

Here we extend our plotting capability by
considering the impact of a third argument of
the plot command, such as in plot(x,y,’r.’).

The colour options are

>>x = -pi:pi/20:pi;

>>plot(x,sin(x),’r-’,x,cos(x),’b-.’)

plot more than one curve on the same graph.

y yellow m magenta

c cyan r red

g green b blue

w white k black

the choice of symbols are

. point v triangle (down)

o circle X triangle (up)

x x-mark < triangle (left)

+ plus > triangle (right)

* star p pentagram

s square h hexagram

d diamond

It is possible to control the line

style. By drawing the line using

one of the previous options:

- solid

: dotted

-. dashdot

- - dashed

x = -pi:pi/20:pi;

clf

plot(x,sin(x),’r-’)

hold on

plot(x,cos(x),’b:’)

hold off

legend(’sine’,’cosine’)

First way

Second way

see help legend for details.

5/21/2022

8

we have already seen that if the function is called

with a vector then the “output” is a vector.. % evaluate_poly3.m

function [f,fprime] = evaluate_poly3(a,x)

f = a(1)*x.^2+a(2)*x+a(3);

fprime = 2*a(1)*x+a(2);

We can further generalize our code by passing

the coefficients of the quadratic to the function,

either as individual values or a vector.

Consider the following

% evaluate_poly2.m

function [f, fprime] = evaluate_poly2(x)

f = 3*x.^2+2*x+1;

fprime = 6*x+2;

x = -5:0.5:5;

[func,dfunc] = evaluate_poly2(x);

plot(x,func,'r-',x,dfunc,'b-.')

x = -5:0.5:5;

a = [3 2 1];

[f,fp] = evaluate_poly3(a,x);

Note: evaluate_poly3(a,x)

was the same as built-in

function, called polyval,

which also evaluates

polynomials.

help polyval gives more

information

Any Question?

