
Dart – Data Types

Like other languages (C, C++, Java), whenever a variable is created, each variable has an

associated data type. In Dart language, there is the type of values that can be represented

and manipulated in a programming language.

Data Type Keyword Description

Number num, int, double, BigInt
Numbers in Dart are used to represent numeric

literals

Strings String Strings represent a sequence of characters

Booleans bool It represents Boolean values true and false

Lists List It is an ordered group of objects

Maps Map It represents a set of values as key-value pairs

Sets Set
It represents an unordered collection of unique

items.

1. Number: The number in Dart Programming is the data type that is used to hold the

numeric value. Dart numbers can be classified as:

• The num type is an inherited data type of the int and double types.

• The int data type is used to represent whole numbers.

• The double data type is used to represent 64-bit floating-point numbers.

void main() {
// declare an integer
 int num1 = 2;
// declare a double value
 double num2 = 1.5;
// print the values
 print(num1);
 print(num2);
 var a1 = num.parse("1");
 var b1 = num.parse("2.34");
 var c1 = a1 + b1;
 print(“Sum = ${c1}");
}

2
1.5
Sum = 3.34

2. String: It used to represent a sequence of characters. The keyword string is

used to represent string literals. String values are embedded in either single or

double-quotes.

void main() {

 String string = 'Welcome to Dart';
 String str = 'Coding is ';
 String str1 = 'Fun’;

 print(string);

 print(str + str1);
}

Welcome to Dart
Coding is Fun

3. Boolean: It represents Boolean values true and false. The keyword bool is used to represent a

Boolean literal in DART.

void main() {
 String str = 'Coding is ';
 String str1 = 'Fun';

 bool val = (str == str1);
 print(val);

}

4. List: Dart List is similar to an array, which is the ordered collection of the objects. The array is

the most popular and commonly used collection in any other programming language. The Dart list

looks like the JavaScript array literals. The syntax of declaring the list is given below.

var list1 = [10, 15, 20,25,30]

The Dart list is defined by storing all elements inside the square bracket [] and separated by

commas (,).

 The graphical representation of the list :

Types of Lists
The Dart list can be categorized into two types -

1. Fixed Length List

The fixed-length lists are defined with the specified length. We cannot change the size at runtime.

The syntax is given below.

Var list= List.filled(int length, fill, {bool growable = false})

The above syntax is used to create the list of the fixed size. We cannot add or delete an element at

runtime. It will throw an exception if any try to modify its size.

The syntax of initializing the fixed-size list element is given below.

list_name[index] = value;

void main() {
 var list1 = List.filled(5, 0);
 list1[0] = 10;
 list1[1] = 11;
 list1[2] = 12;
 list1[3] = 13;
 list1[4] = 14;
 print(list1);

}

[10, 11, 12, 13, 14]

2. Growable List

The list is declared without specifying size is known as a Growable list. The size of the Growable

list can be modified at the runtime. The syntax of the declaring Growable list is given below.

// creates a list with values
var list_name = [val1, val2, val3] Or // creates a list of the size zero
 var list_name = []

void main() {
 var myList = [10, 20, 30];
 print("Original list: $myList");

 print("Adding elements to the end of the list...");
 myList.add(40);
 myList.add(50);
 print(myList);

}

Original list: [10, 20, 30]

Adding elements to the end of the list...

[10, 20, 30, 40, 50]

List Properties
Below are the properties of the list.

Property Description

first It returns the first element case.

isEmpty It returns true if the list is empty.

isNotEmpty It returns true if the list has at least one element.

length It returns the length of the list.

last It returns the last element of the list.

reversed It returns a list in reverse order.

Single It checks if the list has only one element and

returns it.

Inserting Element into List

Dart provides four methods which are used to insert the elements into the lists. These methods are

given below.

1. The add() Method
This method is used to insert the specified value at the end of the list. It can add one element at a
time and returns the modified list object. Let's understand the following example

void main() {
 var odd_list = [1, 3, 5, 7, 9];
 print(odd_list);

 odd_list.add(11);
 print(odd_list);

}

2. The addAll() Method

This method is used to insert the multiple values to the given list. Each value is separated by the

commas and enclosed with a square bracket ([])

void main() {
 var odd_list = [1, 3, 5, 7, 9];
 print(odd_list);

 odd_list.addAll([11, 13, 14]);
 print(odd_list);
}

[1, 3, 5, 7, 9]
[1, 3, 5, 7, 9, 11, 13, 14]

3. The insert() Method

The insert() method provides the facility to insert an element at specified index position. We can

specify the index position for the value to be inserted in the list.

void main() {
 List lst = [3, 4, 2, 5];
 print(lst);

 lst.insert(2, 10);
 print(lst);
}

[3, 4, 2, 5]

[3, 4, 10, 2, 5]

4. The insertAll() Method

The insertAll() function is used to insert the multiple value at the specified index position. It accepts

index position and list of values as an argument.

void main() {
 List lst = [3, 4, 2, 5];
 print(lst);

 lst.insertAll(0, [6, 7, 10, 9]);
 print(lst);
}

[3, 4, 2, 5]

 [6, 7, 10, 9, 3, 4, 2, 5]

Removing List Elements
 Dart provides following functions to remove the list elements.

• remove()

 It removes one element at a time from the given list. It accepts element as an argument. It removes

the first occurrence of the specified element in the list if there are multiple same elements. The

syntax is given below. list_name.remove(value)

• removeAt()

 It removes an element from the specified index position and returns it. The syntax is given below.

 list_name.removeAt(int index)

• removeLast()

 The removeLast() method is used to remove the last element from the given list. The syntax is

given below. list_name.removeLast()

• removeRange()

 This method removes the item within the specified range. It accepts two arguments - start

index and end index. It eliminates all element which lies in between the specified range. The syntax

is given below. list_name. removeRange();

Dart Iterating List elements
 Dart List can be iterated using the forEach method.

void main() {
 var list1 = ["Smith", "Peter", "Cruise"];
 print("Iterating the List Element");
 list1.forEach((item) {
 print("${list1.indexOf(item)}: $item");
 });

for (var value in list1) {
 print('value = $value');
 }

}

Iterating the List Element
0: Smith
1: Peter
2: Cruise

Dart Sets
The Dart Set is the unordered collection of the different values of the same type. It has much

functionality, which is the same as an array, but it is unordered. Set doesn't allow storing the

duplicate values. The set must contain unique values.

It plays an essential role when we want to store the distinct data of the same type into the single

variable. Once we declare the type of the Set, then we can have an only value of the same type. The

set cannot keep the order of the elements.

Dart Initializing Set

Dart provides two methods to declare/initialize an empty set. The set can be declared by using the

{} curly braces proceeded by a type argument, or declare the variable type Set with curly braces {}.

The syntax of declaring set is given below.

var setName = <type>{};
Or
Set<type> setname = {};

void main() {
 print("Initializing the Set");
 Set<String> names = {"James", "Ricky", "Adam"};
 print(names);

}

Add Element into Set
 Dart provides two methods add() and addAll() to insert an element into the given set.

The add() method is used to add the single item into the given set. It can add one at a time when

the addAll() method is used to add the multiple elements to an existing set.

void main() {
 print("Insert element into the Set");
 var names = {"James", "Ricky", "Adam"};
 // Declaring empty set
 var emp = <String>{};
 emp.add("Jonathan");
 print(emp);

 // Adding multiple elements
 emp.addAll(names);
 print(emp);

}

Insert element into the Set
{Jonathan}
{Jonathan, James, Ricky, Adam}

Access the Set Element
Dart provides the elementAt() method, which is used to access the item by passing its specified

index position. The set indexing starts from the 0 and goes up to size - 1, where size is the number of

the element exist in the Set. It will throw an error if we enter the bigger index number than its size.

void main() {
 print("Access element from the Set");
 var names = {"James", "Ricky", "Adam"};
 print(names);

 var x = names.elementAt(2);
 print(x);

}

Access element from the Set
{James, Ricky, Adam}
Adam

Dart Finding Element in Set
Dart provides the contains() method, which is used to find an element in the set. It accepts the single

item as an argument and return the result in Boolean type. If the given element present in the set, it

returns true otherwise false.

void main() {
 print("Example - Find Element in the given Set");
 var names = <String>{"Peter", "John", "Ricky"};

 if (names.contains("Ricky")) {
 print("Element Found");
 } else {
 print("Element not found");
 }

}

Example - Find Element in the given Set
Element Found

Dart Remove Set Element
The remove() method is used to eliminate or remove an element from the given set. It takes the value

as an argument; the value is to be removed in the given set.

void main() {
 print("Example - Remove Element in the given Set");
 var names = <String>{"Peter", "John", "Ricky"};
 print("Before remove : ${names}");

 names.remove("Peter");
 print("After remove : ${names}");

}

Example - Remove Element in the given Set
Before remove : {Peter, John, Ricky}
After remove : {John, Ricky}

Dart Remove All Set Element
We can remove entire set element by using the clear() methods. It deletes or removes all elements to

the given set and returns an empty set.

void main() {
 print("Example - Remove All Element to the given Set");
 var names = <String>{"Peter", "John", "Ricky"};

 names.clear();
 print(names);

}

Example - Remove All Element to the given Set
{}

Dart Iterating Over a Set Element
In Dart, the set element can be iterated using the forEach and for in methods as following

void main() {
 var names = <String>{"Peter", "John", "Ricky"};

 names.forEach((value) {
 print('Value: $value');
 });

for (var value in names) {
 print('value = $value');
 }

}

Value: Peter
Value: John
Value: Ricky

Dart Set Operations
Dart Set provides the facility to perform following set operations. These operations are given below.

Union - The union is set to combine the value of the two given sets a and b.

Intersection - The intersection of the two set a and b returns all elements, which is common in both sets.

Subtracting - The subtracting of two sets a and b (a-b) is the element of set b is not present in the set a.

void main() {
 var x = <int>{10, 11, 12, 13, 14, 15};
 var y = <int>{12, 18, 29, 43};
 var z = <int>{2, 5, 10, 11, 32};
 print("Example - Set Operations");

 print("x union y is -");
 print(x.union(y));

 print("x intersection y is - ");
 print(x.intersection(y));

 print("y difference z is - ");
 print(y.difference(z));
}

Example - Set Operations
x union y is -
{10, 11, 12, 13, 14, 15, 18, 29, 43}
x intersection y is -
{12}
y difference z is -
{12, 18, 29, 43}

Dart Set Properties
The few properties of the Dart set as follows.

Properties Explanations

first It is used to get the first element in the given set.

isEmpty If the set does not contain any element, it returns
true.

isNotEmpty If the set contains at least one element, it returns
true

length It returns the length of the given set.

last It is used to get the last element in the given set.

Single It is used to check whether a set contains only
one element.

Dart Map
Dart Map is an object that stores data in the form of a key-value pair. Each value is associated with

its key, and it is used to access its corresponding value. Both keys and values can be any type. In

Dart Map, each key must be unique, but the same value can occur multiple times. The Map

representation is quite similar to Python Dictionary. The Map can be declared by using curly braces

{} ,and each key-value pair is separated by the commas(,). The value of the key can be accessed by

using a square bracket [].

Declaring a Dart Map
Dart Map can be defined in two methods.
1. Using Map Literals
To declare a Map using map literal, the key-value pairs are enclosed within the curly braces "{}" and
separated by the commas.

void main() {
 var student = {'name': 'Tom', 'age': '23'};
 print(student);

}

Using Map Constructor
To declare the Dart Map using map constructor can be done in two ways. First, declare a map

using map() constructor. Second, initialize the map.

void main() {
 var student = new Map();
 student['name'] = 'Tom';
 student['age'] = 23;
 student['course'] = 'DataBase';
 student['Branch'] = 'Computer Science';
 print(student);

}

{name: Tom, age: 23, course: DataBase, Branch: Computer Science}

Map Methods

The commonly used methods are given below.

➢ addAll() - It adds multiple key-value pairs of other.

void main() {
 Map student = {'name': 'Tom', 'age': 23};
 print('Map :${student}');

 student.addAll({'dept': 'Civil', 'email': 'tom@xyz.com'});
 print('Map after adding key-values :${student}');

}

Map :{name: Tom, age: 23}
Map after adding key-values :{name: Tom, age: 23, dept: Civil, email: tom@xyz.com}

➢ remove() - It removes the key and its associated value if it exists in the given map.

void main() {
 Map student = {'name': 'Tom', 'age': 23};
 print('Map :${student}');

 student.remove('age');
 print('Map after removing given key :${student}');

}

Map :{name: Tom, age: 23}
Map after removing given key :{name: Tom}

➢ clear() - It eliminates all pairs from the map.

void main() {
 Map student = {'name': 'Tom', 'age': 23};
 print('Map :${student}');

 student.clear();
 print('Map after removing all key-values :${student}');

}

Map :{name: Tom, age: 23}
Map after removing all key-values :{}

➢ forEach() - It is used to iterate the Map's entries. The syntax is given below.

void main() {
 Map student = {'name': 'Tom', 'age': 23};
 print('Map :${student}');
 student.forEach((k, v) => print('${k}: ${v}'));

}

Map :{name: Tom, age: 23}
name: Tom
age: 23

Map Properties

The dart:core:package has Map class which defines following properties.

Properties Explanation

Keys It is used to get all keys as an iterable object.

values It is used to get all values as an iterable object.

Length It returns the length of the Map object.

isEmpty If the Map object contains no value, it returns true.

isNotEmpty If the Map object contains at least one value, it returns true.

1.Numbers:
•int: Represents integer values.
•Example: int age = 25;
•double: Represents floating-point numbers with decimal places.
•Example: double height = 1.75;

2.Strings:
•String: Represents a sequence of characters.
•Example: String name = "John Doe";

3.Booleans:
•bool: Represents a logical value, either true or false.
•Example: bool isStudent = true;

4.Lists:
•List: Represents an ordered collection of objects.
•Example: List<int> numbers = [1, 2, 3, 4, 5];

5.Maps:
•Map: Represents a collection of key-value pairs.
•Example: Map<String, int> studentGrades = {'John': 85, 'Jane': 92};

6.Sets:
•Set: Represents an unordered collection of unique objects.
•Example: Set<int> uniqueNumbers = {1, 2, 3, 4, 5};

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

