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Numerical Methods
ITGS219

Lecture: Interpolation and Extrapolation
Lagrange Polynomials

By: Zahra A. Elashaal

Lagrange Polynomials

» We remark that various conclusions can be drawn from the data by using the forward differences;

* We now construct a polynomial which goes through a set of points which are not necessarily
evenly spaced. Let us consider the polynomial

f(z) = (z —x2)(z — x3)(z2 — x4) (z—x)(Z —x3)(Z — x4) f
(g = 22) (%1 — x3) (X1 — X4) ! (2 = x1) (xz — x3) (X2 — x4) 2
(z —x1)(z — x2)(Zz — x4) i+ (z—x)(z — x2)(z — x3) fi

(23 = x1) (X3 — x2) (X3 — x4) (x4 — x1) (g — 2x2) (X4 — x3)
* Itis worth pausing at this point and checking that this curve goes through each of the points (x; 7).
* For example for j = 3, we set z = x;and only the third term is non-zero and we have

flas) = (23 — 11)(3 — 2) (23 — ‘1'4)f3 =1x fy=f;. * Hencethevalue of the polynomial
(r3 — 1) (23 — 29)(23 — 1y4) at z = x,is f; (as we would hope).

» This is an example of a Lagrange polynomial; . 4 ) 4
e =>"r1l
i=1

=z — ;I‘j
r; —

which could have equally been written as -
i1 x
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Lagrange Polynomials ... Cont.

Example 1: The accompanying table gives the velocity. of a moving

body. at various times. Estimate the velocity at 7= 7 s. 4 4
Time. 7. s 1 2 3 8 f(z) = E fi H i
> B = - - €Tri; — XIj
Velocity.v. m's P 4.1 6.4 | 365 i=1 3;1, J
JF1
Solution:

Since /2 is different. we use Lagrange interpolation polynomial.

( —Il)(t —12)...(1 —t") (7 —Io)(t —tz)...(t i)

v(t) = v(,)+ v(t,)+...
@, —t,)t, —1,)...(t, —1,) t, —t,)t, = t,)...(t, =1,) '
V&) = (t—2)-3)t—198) @ + (=D —3)—18) oy ™ (=D —-2)(—8) o
(1-2)a-3)A-8) 2-DE2-3)2-3) GBG-DB-2)3-8)
$ E=DE=2N=3) 5o ey
B-1D(@-2)(8-3)
w7y =T =DA =37 —8) )  T—INT—3NT—8) 44,
a—-2a-3»xa—3 C—-DE2-3)2—93
$7—INF—2NT -5 (6.4) + €7 —UCI-—2N7 2 (36.5)=26.5 m's.
G—-DGC—2)CEC—3) @B—-DE—-—2)EB—3)

Lagrange Polynomials ... cCont.

Example 2: The ratio of the work done in a project. as a function of

time. is found as below. Estimate this ratio at 7 = 2 month. N_1 A, n—1
Time. 7. th 3 4 5 = 0 —1;
e (month) 3 5 flz)=fo+ Z - H(:r: ;).
Work. 7 . (o) 5 14 37 n=1 j=0

Solution: Since A=1 = We can use the particular Gregory-Newton interpolation formula
directly without rescaling.
t,#0 = Shifting is required.

t | Lpea | W | AW | AW
31 0 ) 9 14

4 1 14| 23
5 2 37
mgz)=W(0)+mm+5’2"—l)Alm+ ........ | o W(1)=5+r.(9)+t(t2—_'1).(14)

W(t)=5+9+7t(t-1).
At t,=2 = t,=2-3=-1,
W (o) = 5+9(-D)+7[-1(-1-1)]=10% 1 Not|Ok. .

new
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Lagrange Polynomials ... cont.

Example 2: The ratio of the work done in a project. as a function of

time. is found as below. Estimate this ratio at 7 = 2 month.

Time. 7. (month) 3 4 5
Work. W . (%0) 5 14 37

Solution cont.:
W(tyew)=5+9(-D+7[-1(-1-1)]=10%  Not Ok..
It a function cannot be well approximated by a polynomial, a useful device can be
adopted by plotting a (log — log) graph. This reduces a large variety of functions to
essentially straight lines or to smooth curves which are easy to interpolate.

Use a (log — log) graph . t =Inr | 1.099]1.386]1.609
W =InWw | 1.609|2.639|3.611

Now, since /1 1s different, we use Lagrange interpolation polynomial.

W)= (f‘ =) =% —1t"n) Wty + (@ =’ X" =172)..(t —1"»)

(st D) o=1 3)udl o=t 5) (th =t )t =t3). it 1=13)

W‘(fyl) C, T

Lagrange Polynomials ... cCont.

Example 2: i The ratio of the work done in a project. as a function of
time. is found as below. Estimate this ralio at 7 = 2 month.

Time. 7. (month) 3 4 5

Work. W . (%0) 5 14 37

=Inr" [1.099]1.386 [ 1.609
W' =Inw | 1.609|2.639|3.611

Solution cont." . o ) ) .
Now, since /1 is different, we use Lagrange interpolation polynomial.

Wy = (f’ ') = t"2). (" -1h) - @ =)t =1"2)..(t" —1"n)

* * * * * (I‘0)+ * * * * * * W.(tt1)+'“

(f o—1 1)(’0—[ 2)...(’ o=k n) (’l—f o)(tl—f 2)...(f 1—1 n)

W) = (t —1.386)(r —1.609) (1.609) + @ —=1.099)( —1.609) (2.639)+
(1.099 —1.386)(1.099 —1.609) (1.386 —1.099)(1.386 —1.609)

' L (7 =1.099) —1.386) a.611).
Atr=2 = tt =In2=0.693. (1.609 -1.099)(1.609 —1.386)

Wy = (0-693-1.386)(0.693-1.609) | (o (0.693-1.099)(0.693-1.609) , (oo

(1.099-1.386)(1.099 —1.609) (1.386—-1.099)(1.386 —1.609)
0.693-1.099)(0.693-1.386) 1 <\ 0 s76ces
(1.609 —1.099)(1.609 —1.386)
But W'=inW => W=eW*=g0576664=178 - W(2)=1.78%
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Newton Forward Differences and Lagrange Polynomials ... cont.

This is a convenient way to write out the cubic we require (as it is relatively easily extended to
higher-order cases) and in order to evaluate it we can use

S -
» the MATLAB code: F(=) = i A |
JFi

ip=1:4;

f z=0.0; ) . L

fori=14 This code has been written in this way so
k = find(ip = i); it could be extended to as many points as
prod = f(ip(i)): we want.
forj=k o o For z = 0.6 we find a value of

prod = prod * (z-x(ip(3))) / (x(ip(i))-x(ip())); f 2z=0.6386, which is shown on the

end figure as an asterisk:
f z=f z+prod;

end

Newton Forward Differences and Lagrange Polynomials ... cont.

«For z = 06 we find a value of
f z=0.6386, which is shown on the
figure as an asterisk: T iy
ok i
Where the file called data.dat contains: ab |
X fx)
0.00 1.00000000 -2r 1
0.40 1.03936428
0.80 -0.06498473 3l 1
1.20 -2.44823335
1.60 -4.94458639 _al ]
2.00 -4.82980938
o 0?2 _72




Lagrange Polynomials ... cont.

» As mentioned we can write this expression
as a summation of products and this is easily
extended to N points as

N N
e~ n =2
il .z_.j.

J7i

 Consider the code:

Newton Forward Differences and Lagrange Polynomials ...

» And now test the code using

global x f
load data.dat
X =data(;, 1);
f = data(;, 2);
= length(x);
xmin = x(1); xmax = x(N);
xtest = linspace(xmin, xmax, 20);
for ii = 1:20
[ftest(ii)] = poly_int(xtest(ii), N);
end
plot(x, f, ’r’, xtest, ftest, ’b”)

This gives the next plot

As you can see using six points works quite well at
fitting the data. Although as we will see in
subsequent examples using high-order polynomials

can lead to significant errors.
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function [value] = poly_int(z, N)
global x f
imax = length(x);
if mod(N, 2) =0
disp(’ N should be even *)
break
elseif N >= imax;
disp(’Too many points used’)
break
end
M = N/2;
[ibottom, itop] = findrange(x, z, N);
ip = ibottom : itop;

il =1:N;

fz=0.0;

forii=1:N
k = find(il ~= ii);
prod = f(ip(ii));
forj=k

prgd = prod * (z-x(ip(3))) / (x(ip(ii))-x(ip(1)));
en

f_z=f z+prod;
end
value=f _z;

2

1

Cont.
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S.4.1 Linear Interpolation/Extrapolation

We consider the simplest case wherein we have two points (x1, y1) and (x2, y2). The straight line

through these is given by

Ir— Ia r— I
y= n+ Y2,
r1 — ITa o — I

which here we have constructed in a Lagrange

polynomial style.

independent of the process here and provided x1 # x2

we will always get a straight line. This can be
continued for quadratics and higher order functions.
This is a plot of the data we shall use for this

discussion:

We note that the anSWer s -t Mmoo

S.4.1 Linear Interpolation/Extrapolation

This plot was obtained using the commands:

clear all

load ’data.dat’
plot(data(:,1),data(:,2),’0’,”MarkerSize’,12)
hold on

plot(data(:,1),data(:,2))

hold off

grid on

print -dps2 data.ps

Final command print the results to a Postscript file so that
it can be included in another document (for instance this
text) or sent to a printer. There are many options for this
command, for instance we could use

print -djpeg90 data.jpg  to generate a JPEG file.

As mentioned above for convenience we can

extract the data from the array data using:

X = data(;,1);
f = data(:,2);
clear data

Where the file called data.dat contains:

0.00 1.00000000
0.40 1.03936428
0.80 -0.06498473
1.20 -2.44823335
1.60 -4.94458639
2.00 -4.82980938
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3.5 Calculating Interpolated and Extrapolated Values

How Matlab can be used to determine the interpolating polynomial for a set of points?

We shall presume that we have the requisite number of points to perform this operation, that is ftwo
pointsfor a line, three for a quadratic and fourfor a cubic, etc.

We shall make use of the command polyfit. The syntax for this command is polyfit(x, y, N), where the
points are defined in xand y; and Ais the order of the interpolating polynomial.

This gives the curve we want provide the number of points represented in X, y is N +1.

Let us consider the interpolation of data points using a straight line.

Example 5.2 We seek to find the value of the functionat |x=[1 3 5 7 911];

x = 4.5 where the data points are (1,-3), (3, 4), (5, 5), y=[-34 5-8-3 0];

(7,-8), (9,-3) and (11, 0), using linear interpolation. Xi = 4.5

r = 2:3; % xi lies between the 2" and 3 point of x.
p = polyfitx(r), y(r), 1);

yi = polyval(p, xi)

This gives p=[0.5000 2.5000] (representing the line y = x/2 + 5/2) and y;=4.75. We note that here we
have determined the range rby hand but we could employ the function findrange

5.5 Calculating Interpolated and Extrapolated Values

Example 5.3 Using the data in the previous example now calculate the value of the

interpolating polynomial at x = 4.5 using cubic interpolation.

x=[1357911];

y=[-345-8-30]; We note that this is quite different to the
Xi =4.5; . . . .

[ibot, itop] = findrange(x.y,3): answer given by linear interpolation and
r = ibot:itop; one might argue that linear interpolation
Si::p;;w;ﬁg))’d})l(r)' 3); is better here. This of course depends on

the underlying function.

This gives p=/-0.1667 0.75 2.667 -6.25]and y,=5.75.
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