
7/18/2022

1

Lecture: Interpolation and Extrapolation

By: Zahra A. Elashaal

• We remark that various conclusions can be drawn from the data by using the forward differences;

• We now construct a polynomial which goes through a set of points which are not necessarily
evenly spaced. Let us consider the polynomial

=
(𝑧 − 𝑥2)(𝑧 − 𝑥3)(𝑧 − 𝑥4)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)
𝑓1 +

(𝑧 − 𝑥1)(𝑧 − 𝑥3)(𝑧 − 𝑥4)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)(𝑥2 − 𝑥4)
𝑓2

+
(𝑧 − 𝑥1)(𝑧 − 𝑥2)(𝑧 − 𝑥4)

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)(𝑥3 − 𝑥4)
𝑓3 +

(𝑧 − 𝑥1)(𝑧 − 𝑥2)(𝑧 − 𝑥3)

(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)(𝑥4 − 𝑥3)
𝑓4

• It is worth pausing at this point and checking that this curve goes through each of the points (xj, fj).

• For example for j = 3, we set z = x3 and only the third term is non-zero and we have

• This is an example of a Lagrange polynomial;
which could have equally been written as

𝑓 𝑧

• Hence the value of the polynomial
at z = x3 is f3 (as we would hope).

7/18/2022

2

Example 1:

Example 2:

Solution:

7/18/2022

3

Solution cont.:

Example 2:

Solution cont.:

Example 2:

But W*=lnW => W =eW* = e0.576664 =1.78 ⸫ W(2)=1.78%

7/18/2022

4

This is a convenient way to write out the cubic we require (as it is relatively easily extended to
higher-order cases) and in order to evaluate it we can use

• the MATLAB code:

ip = 1:4;

f_z = 0.0;

for i = 1:4

k = find(ip ˜= i);

prod = f(ip(i));

for j = k

prod = prod * (z-x(ip(j))) / (x(ip(i))-x(ip(j)));

end

f_z = f_z + prod;

end

This code has been written in this way so

it could be extended to as many points as

we want.

For z = 0.6 we find a value of

f_z=0.6386, which is shown on the

figure as an asterisk:

• For z = 0.6 we find a value of
f_z=0.6386, which is shown on the
figure as an asterisk:

Where the file called data.dat contains:

x f(x)

0.00 1.00000000

0.40 1.03936428

0.80 -0.06498473

1.20 -2.44823335

1.60 -4.94458639

2.00 -4.82980938

7/18/2022

5

• As mentioned we can write this expression
as a summation of products and this is easily
extended to N points as

• Consider the code:

function [value] = poly_int(z, N)

global x f

imax = length(x);

if mod(N, 2) ˜= 0

disp(’ N should be even ’)

break

elseif N >= imax;

disp(’Too many points used’)

break

end

M = N/2;

[ibottom, itop] = findrange(x, z, N);

ip = ibottom : itop;

il = 1:N;

f_z = 0.0;

for ii = 1:N

k = find(il ˜= ii);

prod = f(ip(ii));

for j = k

prod = prod * (z-x(ip(j))) / (x(ip(ii))-x(ip(j)));

end

f _z = f_z + prod;

end

value = f_z;

• And now test the code using

global x f

load data.dat

x = data(:, 1);

f = data(:, 2);

N = length(x);

xmin = x(1); xmax = x(N);

xtest = linspace(xmin, xmax, 20);

for ii = 1:20

[ftest(ii)] = poly_int(xtest(ii), N);

end

plot(x, f, ’r’, xtest, ftest, ’b’)

This gives the next plot

As you can see using six points works quite well at

fitting the data. Although as we will see in

subsequent examples using high-order polynomials

can lead to significant errors.

7/18/2022

6

We consider the simplest case wherein we have two points (x1, y1) and (x2, y2). The straight line

through these is given by

which here we have constructed in a Lagrange

polynomial style. We note that the answer is

independent of the process here and provided x1≠ x2

we will always get a straight line. This can be

continued for quadratics and higher order functions.

This is a plot of the data we shall use for this

discussion:

This plot was obtained using the commands:

Final command print the results to a Postscript file so that

it can be included in another document (for instance this

text) or sent to a printer. There are many options for this

command, for instance we could use

print -djpeg90 data.jpg to generate a JPEG file.

clear all

load ’data.dat’

plot(data(:,1),data(:,2),’o’,’MarkerSize’,12)

hold on

plot(data(:,1),data(:,2))

hold off

grid on

print -dps2 data.ps

As mentioned above for convenience we can

extract the data from the array data using:

x = data(:,1);

f = data(:,2);

clear data

Where the file called data.dat contains:

0.00 1.00000000

0.40 1.03936428

0.80 -0.06498473

1.20 -2.44823335

1.60 -4.94458639

2.00 -4.82980938

7/18/2022

7

How Matlab can be used to determine the interpolating polynomial for a set of points?

We shall presume that we have the requisite number of points to perform this operation, that is two

points for a line, three for a quadratic and four for a cubic, etc.

We shall make use of the command polyfit. The syntax for this command is polyfit(x, y, N), where the

points are defined in x and y, and N is the order of the interpolating polynomial.

This gives the curve we want provide the number of points represented in x, y is N+1.

Let us consider the interpolation of data points using a straight line.

Example 5.2 We seek to find the value of the function at

x = 4.5 where the data points are (1,−3), (3, 4), (5, 5),

(7,−8), (9,−3) and (11, 0), using linear interpolation.

x = [1 3 5 7 9 11];

y = [-3 4 5 -8 -3 0];

xi = 4.5;

r = 2:3; % xi lies between the 2nd and 3rd point of x.

p = polyfit(x(r), y(r), 1);

yi = polyval(p, xi)

This gives p=[0.5000 2.5000] (representing the line y = x/2 + 5/2) and yi=4.75. We note that here we

have determined the range r by hand but we could employ the function findrange

Example 5.3 Using the data in the previous example now calculate the value of the

interpolating polynomial at x = 4.5 using cubic interpolation.

x = [1 3 5 7 9 11];

y = [-3 4 5 -8 -3 0];

xi = 4.5;

[ibot, itop] = findrange(x,y,3);

r = ibot:itop;

p = polyfit(x(r), y(r), 3);

yi = polyval(p,xi)

This gives p=[-0.1667 0.75 2.667 -6.25] and yi=5.75.

We note that this is quite different to the

answer given by linear interpolation and

one might argue that linear interpolation

is better here. This of course depends on

the underlying function.

7/18/2022

8

Any Question?

