
FLUTTER

Flutter is a UI toolkit for creating fast, beautiful, natively compiled applications for mobile, web, and

desktop with one programing language and single codebase. It is free and open-source. It was initially

developed from Google and now manages by European Computer Manufacturers

Association (ECMA) standard. Flutter apps use Dart programming language for creating an app.

The dart programming shares several same features as other programming languages, such as Kotlin

and Swift, and can be trans-compiled into JavaScript code.

Flutter is mainly optimized for 2D mobile apps that can run on both Android and iOS platforms. We can

also use it to build full-featured apps, including camera, storage, geolocation, network, third-party SDKs,

and more.

Features of Flutter

Flutter gives easy and simple methods to start building

beautiful mobile and desktop apps with a rich set of

material design and widgets.

Whenever you are going to code for building anything in

Flutter, it will be inside a widget. The central purpose is

to build the app out of widgets. It describes how your app

view should look like with their current configuration and

state. When you made any alteration in the code, the

widget rebuilds its description by calculating the

difference of previous and current widget to determine the

minimal changes for rendering in UI of the app.

Widgets are nested with each other to build the app. It

means the root of your app is itself a widget, and all the

way down is a widget also. For example, a widget can

display something, can define design, can handle

interaction, etc.

Flutter Widgets

We can create the Flutter widget like this:

Class ImageWidget extends StatelessWidget {
// Class Stuff

}

import 'package:flutter/material.dart';

void main() {
 runApp(MyHomePage());
}

class MyHomePage extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 appBar: AppBar(
 title: Text("First APP"),
),
 body: Center(
 child: Text('Hello World'),
),
),
);
 }
}

Types of Widget

Visible widget
The visible widgets are related to the user input and output data. Some of the important types of this

widget are:

Text

A Text widget holds some text to display on the screen. We can align the text widget by

using textAlign property, and style property allow the customization of Text that includes font, font

weight, font style, letter spacing, color, and many more. We can use it as like below code snippets.

new Text(
Hello, Javatpoint!',
textAlign: TextAlign.center,
style: new TextStyle(fontWeight: FontWeight.bold),
)

Button
This widget allows you to perform some action on click. Flutter does not allow you to use the Button
widget directly; instead, it uses a type of buttons like a TextButton and a ElevatedButton. We can use
it as like below code snippets.

// TextButton Example
new TextButton (
child: Text("Click here"),
onPressed: () {
// Do something here

},
),

//ElevatedButton Example
new ElevatedButton (
child: Text("Click here"),
elevation: 5.0,
onPressed: () {
// Do something here

},
),

Image
This widget holds the image which can fetch it from multiple sources like from the asset folder or
directly from the URL. It provides many constructors for loading image, which are given below:

•Image: It is a generic image loader, which is used by ImageProvider.
•asset: It load image from your project asset folder.
•file: It loads images from the system folder.
•memory: It load image from memory.
•network: It loads images from the network.
To add an image in the project, you need first to create an assets folder where you keep your images
and then add the below line in pubspec.yaml file.

assets:
 - assets/

class MyHomePage extends StatelessWidget {
// This widget is the home page of your application.
final String title;

@override
Widget build(BuildContext context) {
return MaterialApp (

 home: scaffold(
appBar: AppBar(
title: Text(this.title),

),
body: Center(
child: Image.asset('assets/computer.png'),

),
),

);
}

}

Icon
This widget acts as a container for storing the Icon in the Flutter. The following code explains it more
clearly.

Icon(Icons.thumb_up,
 color: Colors.blue,
 size: 100,),

Invisible widget
The invisible widgets are related to the layout and control of widgets. It provides controlling how the
widgets actually behave and how they will look onto the screen. Some of the important types of
these widgets are:

Column
A column widget is a type of widget that arranges all its children's widgets in a vertical alignment. It
provides spacing between the widgets by using
the mainAxisAlignment and crossAxisAlignment properties. In these properties, the main axis is the
vertical axis, and the cross axis is the horizontal axis.

new Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
new Text(
"VegElement",

),
new Text(
"Non-vegElement"

),
],

),

Row
The row widget is similar to the column widget, but it constructs a widget horizontally rather than
vertically. Here, the main axis is the horizontal axis, and the cross axis is the vertical axis.

new Row(
mainAxisAlignment: MainAxisAlignment.spaceEvenly,
children: <Widget>[
new Text(
"VegElement",

),
new Text(
"Non-vegElement"

),
],

),

Center
This widget is used to center the child widget, which comes inside it. All the previous examples
contain inside the center widget.

Center(
child: new column(
mainAxisAlignment: MainAxisAlignment.spaceEvenly,
children: <Widget>[
new Text(
"VegElement",

),
new Text(
"Non-vegElement"

),
],

),
),

Padding
This widget wraps other widgets to give them padding in specified directions. You can also provide
padding in all directions. We can understand it from the below example that gives the text widget
padding of 6.0 in all directions.

Padding(
padding: const EdgeInsets.all(6.0),
child: new Text(
"Element 1",

),
),

Scaffold
This widget provides a framework that allows you to add common material design elements like
AppBar, Floating Action Buttons, Drawers, etc.

Stack
It is an essential widget, which is mainly used for overlapping a widget, such as a button on a
background gradient.

State Management Widget

In Flutter, there are mainly two types of widget:
•StatelessWidget
•StatefulWidget

StatefulWidget

A StatefulWidget has state information. It contains mainly two classes: the state
object and the widget. It is dynamic because it can change the inner data during the
widget lifetime. This widget does not have a build() method. It
has createState() method, which returns a class that extends the Flutters State
Class. The examples of the StatefulWidget are Checkbox, Radio, Slider, Form, and
TextField.

class Car extends StatefulWidget {
@override
_CarState createState() => _CarState();

}

class _CarState extends State<Car> {
@override
Widget build(BuildContext context) {
return Container(
color: const Color(0xFEEFE),

child: Container(//child: Container())
)

);
}

}

StatelessWidget

The StatelessWidget does not have any state information. It remains static
throughout its lifecycle. The examples of the StatelessWidget are Text, Row,
Column, Container, etc.

class MyStatelessCarWidget extends StatelessWidget {
const MyStatelessCarWidget ({ Key key }) : super(key: key

);

@override
Widget build(BuildContext context) {
return Container(

 color: const Color(0x0xFEEFE));
}

}

	Slide 1: Flutter
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

