
5/21/2022

1

Lecture 1

By: Zahra Abdalla Elashaal

Activity Grade

Homework's and Quizzes
- a Matlab program every week with

5marks, then averaged overall to 20

- a quiz a week with 5marks

20

Midterm exam. 30

Final Exam 50

Total 100

• Mathematics ITMM121.

• C programming ITGS122.

• MatLab R2017b Application.

 This program should be installed in

your computer to do your work with it,

Reference Book: An Introduction to Programming and Numerical Methods in MATLAB

By: S.R. Otto and J.P. Denier

Helping Book:
- Introduction to Numerical Methods and Matlab Programming for Engineers

- Numerical Methods for Engineers 7th_Edit

5/21/2022

2

Chapter 1 Simple Calculations with Matlab.

Chapter 2 Writing Scripts and Functions.

Chapter 3 Loops and Conditional Statements.

Chapter 4 Root Finding.

Chapter 5 Interpolation and Extrapolation.

Chapter 6 Matrices.

Chapter 7 Numerical Integration.

Chapter 8 Solving Differential Equations.

Chapter 1 Simple Calculations with Matlab.
1 Introduction

2 Scalar Quantities and Variables

2.1 Rules for Naming of Variables.

2.2 Precedence: The Order in Which Calculations Are Performed

2.3 Mathematical Functions

3 Format: The Way in Which Numbers Appear

4 Vectors in MATLAB

4.1 Initialising Vector Objects

4.2 Manipulating Vectors and Dot Arithmetic

5 Setting Up Mathematical Functions

6 Some MATLAB Specific Commands

6.1 Looking at Variables and Their Sizes

7 Accessing Elements of Arrays .

8 Tasks

Lecture 1

Simple Calculations with Matlab

Reference Book: An Introduction to Programming and Numerical Methods in MATLAB

By: S.R. Otto and J.P. Denier

5/21/2022

3

Why Do We Need Numerical Methods?

• Some numerical answers are required to rely on approximate methods to obtain useable answers.

• There are many problems whose exact solution is beyond our current state of knowledge.

• There are also many problems which are too long to solve by hand.

When such problems arise we can exploit numerical analysis to reduce the problem to one involving a

finite number of unknowns and use a computer to solve the resulting equations.

 The computer then used to solve problems which cannot be solved by hand.

 In this subject we elect to express our ideas in terms of the syntax of the computer package MATLAB.

The name MATLAB suggested from (MATrix LABoratory).

In Matlab, the basic objects are matrices, i.e. arrays of numbers. Vectors can be thought of as

special matrices.

The MATLAB prompt is denoted by >> (which does not need to be typed),

>> a = 3

a =

3

>> b = 4;

Which mean:

set a equal to 3

set b equal to 4 (and suppress output)

Note:
- it is not possible to have >> 7 = x (set 7 equal to x)

- whereas we could have >> x = 7 (set x equal to 7)

These variables can now be used again,

>> a = 3;

>> b = a+1;

>> x = a+b;

MATLAB can be used into two basic groups:

unary and binary operations,

>> 3*4
ans =

12

>> ans*2
ans =

24

We could have typed the commands on one line as:

>> a = 3; b = 4; x = a*b

which can be and read as:
set a equal to 3 (don’t output anything),

set b equal to 4 (don’t output anything)

and set x equal to a times b

5/21/2022

4

Example-1 Try entering the following commands

into MATLAB, but before you do so try to work

out what output you would expect.

>> 3*5*6

>> z1 = 34;

>> z2 = 17;

>> z3 = -8;

>> z1/z2

>> z1-z3

>> z2+z3-z1

The answers, 90, 2, 42 and −25.

Example-2 Here we give an example of the

simple use of brackets:

>> format rat

>> a = 2; b = 3; c = 4;

>> a*(b+c)

>> a*b+c

>> a/b+c

>> a/(b+c)

>> format

The answers, 14, 10, 14/3 and 2/7.

(The command format rat has been used to force the results to be

shown as rationales, the final command format reverts to the

default, which happens to be format short.)

The rules for naming variables in MATLAB can be summarized as follows:

1. Variable names must start with a letter and can be up to 31 characters long. The trailing
characters can be numbers, letters or underscores.

2. There are many choices which are forbidden as variable names, for some reasons:

• (such as a*b which signifies a multiplication of the a and b)

• (and a.b). MATLAB supports object orientated programming. Because of this a.b refers to the
value of the “b” component of the object a.

• The naming of MATLAB files have a single dot. However, in this case a single dot is allowed
within the name of the file; everything after the dot is used to tell MATLAB what type of file it is
dealing with (whether it be a file containing MATLAB code, or data etc).

3. Variable names are case sensitive, so that a and A are two different objects.

4. It is good programming practice to employ meaningful variable names. however as the
examples become more complex our variable names will be more informative.

5. Variables names should not corresponds to or coincide with a predefined MATLAB command
or with any user-defined subroutines.

5/21/2022

5

a/b*c =
𝑎

𝑏
𝐶 ≠

𝑎

𝑏𝑐

a(b + c) = a*(b+c) ≠ a*b+c

c+a*b = c + ab ≠ (c + a)b

a/(b*c) =
𝑎

𝑏𝑐
≠

𝑎

𝑏
𝐶

Example-3 Determine the value of the expression

a(b + c(c + d))a, where a = 2, b = 3, c = −4, d = −3.

The MATLAB statement to evaluate the expression:

>> a = 2; b = 3; c = -4; d = -3;

>> a*(b+c*(c+d))*a

The answer 124

Note:

- all multiplications must be denoted by an asterisk *.

- brackets used to force precedence of the operation.

- operations of division and multiplication take precedence

over addition and subtraction.

Example-4 Evaluate the following expressions

by hand and then check answers with MATLAB.

1+2/3*4-5

1/2/3/4

1/2+3/4*5

5-2*3*(2+7)

(1+3)*(2-3)/3*4

(2-3*(4-3))*4/5

Note: (type help precedence
at the MATLAB prompt for more details).

The answer in the book

It is also possible to enter numbers using the exponent-mantissa

form. This uses the fact that numbers can be written as

“mantissa × 10exponent ”

We have 3432.6 ≡ 3.4326 × 103

And 100 × 1010 ≡ 1, 000, 000, 000, 000.

Example-5 Write 3432.6 in exponent-mantissa

form and write 100 × 1010 in normal form..

Note:

The smallest positive number that MATLAB can

store which is different from zero is realmin ≈ 10−308,

whilst the largest number is realmax ≈ 10308.

Number mantissa - exponent MATLAB form

789.34 .

0.0001

4

400000000000

7.8934 × 102

1 × 10−4

4 × 100

4 × 1011

7.8934e2

1e-4

4

4e11

Example-6 Use MATLAB to calculate the

expression.

where a = 3, b = 5 and c = −3.
b −

𝑎

𝑏+
𝑏+𝑎

𝑐𝑎

>> a = 3; b = 5; c = -3;

>> x = b-a/(b+(b+a)/(c*a));

the solution will contained in the variable x.

Example-7 Enter the numbers x = 45 × 109 and

y = 0.0000003123 using the exponent-mantissa

syntax described above. Calculate the quantity xy

using MATLAB and by hand...

>> x = 45e9;

>> y = 3.123e-7;

>> xy = x*y;

5/21/2022

6

1. Arithmetic functions: +, -, / and *.

2. Trigonometric functions: sin (sine), cos (cosine) and tan (tangent) (with their inverses as

asin, acos or atan). the syntax of the commands is sin(x)

3. Exponential functions: exp, log, log10 and ˆ, which is a binary operation so that aˆb = ab

4. Other functions available in MATLAB like:

round(x) Rounds a number to the nearest integer

ceil(x) Rounds a number up to the nearest integer

floor(x) Rounds a number down to the nearest integer

fix(x) Rounds a number to the nearest integer towards zero

rem(x,y) The remainder left after division

mod(x,y) The signed remainder left after division

abs(x) The absolute value of x

sign(x) The sign of x

factor(x) The prime factors of x (factor gives multiple outputs)

sqrt(x) The squared root of x function.

size(x) The size of the vector or matrix, returns the number of rows and columns.

Important Point

It is essential that arguments for

functions are contained within

round brackets, as cos(x)

and when functions are multiplied

together an asterisk is used,

as f(x) = (x+2) cos x should be

written (x+2)*cos(x)

Example-8 Calculate the expressions: sin 60◦ (and the

same quantity squared), exp(ln(4)), cos 45◦ −sin 45◦,

ln exp(2+cos π) and tan 30◦/(tan π/4+tan π/3)..

>> x = sin(60/180*pi)
x =0.8660

>> y = xˆ2
y =0.7500

>> exp(log(4))
ans =4

>> z = 45/180*pi; cos(z)-sin(z)

ans =1.1102e-16

>> log(exp(2+cos(pi)))
ans =1

>> tan(30/180*pi)/(tan(pi/4)+tan(pi/3))
ans =0.2113

The values of these expressions should be √3/2, 3/4, 4, 0, 1 and 1/(3 +√3).

Note: zero has been approximated by 1.1102e-16 which is smaller than the

MATLAB variable, which reflects the accuracy of the calculations.

Note:

Some functions takes multiple inputs and returns a single output.

others which takes a single input and returns multiple outputs..

>> x = factor(24)

x = [2 2 2 3]

Example-9 the number 12345 = 9 × 1371 + 6, so the

remainder of 12345 / 9 = 6. by MATLAB using:

>> rem(12345,9);

example of function takes a single input and returns

multiple outputs is factor which provides the prime

decomposition of an integer.

the solution is returned as an array x

5/21/2022

7

Example-10 Consider the following code on the vector s

>> s = [1/2 1/3 pi sqrt(2)];

>> format short; s

s = 0.5000 0.3333 3.1416 1.4142

>> format long; s

s = 0.50000000000000 0.33333333333333 3.14159265358979 1.41421356237310

>> format rat; s

s = 1/2 1/3 355/113 1393/985

>> format; s

s = 0.5000 0.3333 3.1416 1.4142

For more info. type help format
short – 5 digits

long – 15 digits

rat – try to represent the answer as a rational.

>> r = 1:5;

r= [1 2 3 4 5]

>> v = [0 1 2 3]

v= [0 1 2 3]

>> u = [9; 10; 11; 12; 13]

the vector u will be column vector

You can access an entry in a vector with

>> u(2)

ans = 10

You can change the value of that entry with

>> u(2)=47

You can extract a slice out of a vector with

>> u(2:4)

One of the most powerful aspects of MATLAB is its use of vectors (and

matrices) as objects.

In Matlab, the basic objects are matrices, i.e. arrays of numbers. Vectors can

be thought of as special matrices. A row vector is recorded as a 1 × n matrix

and a column vector is recorded as a m × 1 matrix.

5/21/2022

8

By transposing the vector we can change a row vector

into a column vector, and ' call the transpose operator.

>> w = u’

>> x = -1 : .1 : 1

r = a : h : b, creates the vector r running from a to b in

steps of h,

>> r = 1 : 2 : 5;

r= [1 3 5]

>> t = 1 : 2 : 6;

t= [1 3 5]

>> s = 1: 0.5 : 3.5;

s = 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

Why r and t have the same

answer? Which is:

[1 3 5]

>> m = linspace(0,1);

>> y = linspace(0,1,5)

y = 0.0000 0.2500 0.5000 0.7500 1.0000

m is a row vector runs from 0 to 1 and has 100 elements

and y again runs from 0 to 1 but now has 5 elements.

Note:

To set up a vector which runs from zero to one in steps of

1/N, we can use:

w = 0:1/N:1

or w = linspace(0,1,N+1)

Example:

typing s=0:0.1:1.0; length(s) . You will find that s has 11

elements.

Example: if N=5 both of the vectors will be:

w = 0 0.2000 0.4000 0.6000 0.8000 1

Example: mathematical objects to multiply

a value by a vector,

>> a = [1 2 3];

>> 2*a;

ans = 2 4 6

Example: mathematical objects to multiply a vector by

a vector,

>> a = [1 2 3];

>> b = [4 5 6];

>> a*b

??? Error using ==> *

Inner matrix dimensions must agree.

Dot arithmetic allows us to manipulate vectors in an element-wise fashion rather than treating

them as mathematical objects (in fact for addition and subtraction this is the same thing).

An error message appears because both a and b are row vectors and therefore cannot be multiplied together.

to multiply the elements of vector a by the elements of vector b in an element by element sense. by using

dot arithmetic as follows
>> a = [1 2 3];

>> b = [4 5 6];

>> a.*b

ans = 4 10 18

[a1b1, a2b2, a3b3].
The returned vector containingThe . indicates to MATLAB to perform

the operation term by term and the *

indicates we require a multiplication.

5/21/2022

9

>> s = 1:6

s = 1 2 3 4 5 6

>> t = 6:-1:1

t = 6 5 4 3 2 1

>> s+t

ans = 7 7 7 7 7 7

>> s-t

ans = -5 -3 -1 1 3 5

>> s.*t

ans = 6 10 12 12 10 6

>> s./t

ans = 0.1667 0.4000 0.7500 1.3333 2.5000 6.0000

>> s.ˆ2

ans = 1 4 9 16 25 36

>> 1./s

ans = 1.0000 0.5000 0.3333 0.2500 0.2000 0.1667

>> s/2

ans = 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

>> s+1

ans = 2 3 4 5 6 7

Example: We can also do a term by term
division with

>> a = [1 2 3];

>> b = [4 5 6];

>> a./b

ans = 0.2500 0.4000 0.5000

The result is,
a1

b1
,
a2

b2
,
a3

b3

Example-11 We shall create two vectors

running from 1 to 6 and from 6 to 1 and then

demonstrate the use of the dot arithmetical

operations:

The produces output

Note:

the vectors need to be the

same size (or one of them is

a scalar – as in the last three

examples).

Example-12 Set up a vector x which contains the

values from 0 to 1 in steps of one tenth =1/10.

% Firstly just list all the values:

>> x = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];

% Use the colon construction

>> x = 0 : 0.1 : 1.0;

% Or use the command linspace

>> x = linspace(0,1,11);

This can be done in a variety of ways:

It discuss the ways in which you can set up the input to the function

What is the output of linspace(0,1,10)? And why?

now set up a mathematical function, y = x2.

Initially you may want to type x^2

but this will generate the error message

??? Error using ==> ^
Matrix must be square. Why?????

Error using ^

One argument must be a square matrix and the

other must be a scalar. Use POWER (.^) for

elementwise power.

>> y = x. ^2
y = 0 0.01 0.04 0.09 0.16 0.25 0.360.49 0.64 0.81 1.00

Equivalently we could use y = x.*x;
Note: The piece of code after the % is treated by

Matlab as a comment and so is ignored.

5/21/2022

10

Example-13 Construct the polynomial

y = (x+2)2(x3 +1)

for values of x from -1 to 1 in steps of 0.1.

>> x = -1:0.1:1;

>> f = x+2;

>> g = x.^3+1;

>> y = (f.^2).*(g);

>> y = ((x+2).^2).*(x.^3+1)

Or you can use the next command instead of

the last 3 commands

good idea to use

intermediate functions

when constructing

complicated functions.

>> x = 1:0.01:2;

>> f = x.ˆ2;

>> g = x.ˆ3+1;

>> y = f./g;

Example-14 Construct the function

for x from 1 to 2 in steps of 0.01.

y=
𝑥2

𝑥3+1

y = x.ˆ2./(x.ˆ3+1);

Or you can use

Example-15 Construct the function

for values of x from 1 to 3 in steps of 0.02.

y(x)= sin(
x cos x
𝑥2+3𝑥+1

)

>> x = 1:0.02:3;

>> f = x.*cos(x);

>> g = x.^2+3*x+1;

>> y = sin(f./g)

More Examples…

Example-16 Evaluate the cubic

y = x3 + 3x2 − x − 1

at the points x = (1, 2, 3, 4, 5, 6).

% Firstly set up the points at which the polynomial

% is to be evaluated

>> x = 1:6;
% Enter the coefficients of the cubic (note that

% these are entered starting with the

% coefficient of the highest power first

>> c = [1 3 -1 -1];
% Now perform the evaluation using polyval

>> y = polyval(c,x)
y = 2 17 50 107 194 317

It is important that you remember

to enter the coefficients of the

polynomial starting with the one

associated with the highest power

and that zeros are included in the

sequence.

We would make calculations where the input can take a variety of forms. The

first command is polyval. This command takes two inputs, namely the

coefficients of a polynomial and the values at which you want to evaluate it.

Important Point

5/21/2022

11

Example-17 Plot the polynomial y = x4+x2−1

between x = −2 and x = 2 (using fifty points).

>> x = linspace(-2,2,50);

>> c = [1 0 1 0 -1];

>> y = polyval(c,x);

>> plot(x,y)

We might want to plot the results of this calculation and this can be simply

accomplished using the plot command. This produces the output

this data into Matlab with the following commands
entered in the command window:

>> x = [5 20 30 50 55]

>> y = [0.08 0.015 0.009 0.006 0.0055]

We can plot data in the form of vectors using the

plot command:

>> plot(x,y)

This will produce a graph with the data points

connected by lines. If you would prefer that the data

points be represented by symbols you can do so. as:

>> plot(x,y,’-*’)

>> plot(x,y,’-o’)

>> plot(x,y,’-.’)

Consider the following table, obtained from experiments

on the viscosity of a liquid.1 We can enter

T (C◦) 5 20 30 50 55

μ 0.08 0.015 0.009 0.006 0.0055

Type help plot for more info. about plot

5/21/2022

12

Example-18 Find the roots of the polynomial

y = x3 − 3x2 + 2x using the command roots.

>> c = [1 -3 2 0];

>> r = roots(c)

r =

0

2

1

One of the most useful commands is the roots to manipulate polynomials.

The input to the routine is simply these coefficients and the output is the roots

of the polynomial.

poly convert roots to polynomial. This takes

the roots and generates the coefficients of the

polynomial having those roots.

poly(r), when r is a vector, is returns a vector

whose elements are the coefficients of the

polynomial whose roots are the elements of r.

>> poly(r)

ans = 1 -3 2 0

To list the variables which are currently defined we can use the command whos. This will give a list of the

variables which are currently defined. And the command who used to obtain a shorter output.

This command whos re* used to list certain variables only, lists the variables whose names start with re.

Example-19 The following code

>> clear all

>> a = linspace(0,1,20);

>> b = 0:0.3:5;

>> c = 1.;

>> whos

Grand total is 38 elements using 304 bytes

gives the output

Name Size Bytes Class

a 1x20 160 double

b 1x17 136 double

c 1x1 8 double

• Here we have used the clear all command

to remove all previously defined variables.

• To look at the size of one variable we can use

the command length, as example with the

previous length(a) will give the answer 20.

• We note that the command size(a) will give

two dimensions of the array, that is in this

case [1 20].

5/21/2022

13

considering a simple array x = 0:0.1:1.;. The elements of this array can be recalled by using the format

x(1) through to x(11). The number in the bracket is the index and refers to which value of x we require.

A convenient mathematical notation for this would be xj where j = 1, · · · , 11. This programming

notation should not be confused with x(j); that is x is a function of j.

Example-20 Construct the function f(x) = x2+2

on the set of points x = 0 to 2 in steps of 0.1 and

give the value of f(x) at x = 0, x = 1 and x = 2. The

code to construct the function is:

>> x = 0:0.1:2;

>> f = x.ˆ2+2;
% Function at x=0

>> f(1)

ans = 2
% Function at x=1

>> f(11)

ans = 3
% Function at x=2

>> f(21)

ans = 6

In MATLAB f(j) the value of j refers to

the index within the array rather than

the function f(.) evaluated at the value j!

In this example we have noted that

xj = (j −1)/10
and hence x1 = 0, x11 = 1 and x21 = 2.

These three indices are the ones we have

used to find the value of the function.

Example-21 We

now show how to

extract various

parts of the array x.

>> x = linspace(0,1,10);

>> y = x(1:end); % Whole of x

>> y = x(1:end/2); % First half

>> y = x(2:2:end); % Even indices only

>> y = x(2:end-1); % All but the first & last one

Important

Point

Example-22 Debug the code which is supposed to set up the function f(x) = x3 cos(x + 1)

on the grid x = 0 to 3 in steps of 0.1 and give the value of the function at x = 2 and x = 3.

x = linspace(0,3);

f = x^3.*cos x+1;

% x = 2

f(2)

% x = 3

f(End)

Homework:

Tasks on page 24 is homework

x = 0:0.1:3; % or x = linspace(0,3,31);

f = x.^3.*cos(x+1);

% x = 2

f(21)

ans = -7.9199

% x = 3

f(end)

ans = -17.6484

The corrected code

should be

5/21/2022

14

Tasks

Task 1.2 Calculate the value of the function

y(x) = |x| sin x2

for values of x = π/3 and π/6 (use the MATLAB
command abs(x) to calculate |x|).

Task 1.7 Evaluate the function

for x = 3 to x = 5 in steps of 0.01.

𝑦 =
𝑥

𝑥 +
1
𝑥2

Solution 1.2 To calculate the function y(x) = |x| sin x2

we use the code:

x = pi/3;

y = abs(x)*sin(xˆ2);

and similarly for x = π/6. Notice care is needed with

the brackets and the syntax.

x = 3:0.01:5;

y = x./(x+1./x.ˆ2);

Solution 1.7

x = -2:0.1:-1;

f = 1./x;

y = f.ˆ3+f.ˆ2+3*f;

Solution 1.8

Task 1.8 Evaluate the function

for x = −2 to x = −1 in steps of 0.1.

𝑦 =
1

𝑥3
+
1

𝑥2
+
3

𝑥

Any Question?

