
تامولعملاةینقتةیلكـسلبارطةعماج

Design and Analysis Algorithms
تايمزراوخ ليلحت و ميمصت

ITGS301

Lecture 9 : ةعساتلا ةرضاNOا

Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by

combining the solutions to subproblems. (“Programming” in this context refers to a

tabular method, not to writing computer code.)

divide-and-conquer algorithms partition the problem into disjoint subproblems, solve

the subproblems recursively, and then combine their solutions to solve the original

problem. In contrast, dynamic programming applies when the subproblems overlap—

that is, when subproblems share sub subproblems.

In this context, a divide-and-conquer algorithm does more work than necessary,

repeatedly solving the common sub subproblems. A dynamic-programming

algorithm solves each sub subproblem just once and then saves its answer in a

table, thereby avoiding the work of recomputing the answer every time it solves

each sub subproblem.

Ways to implement a dynamic-programming approach.

1. Memoization (top-down method)

write the procedure recursively in a natural manner, but modified to save the result of

each subproblem (usually in an array or hash table).

it returns the saved value

2. Tabulation (bottom-up method).

It depends on some natural notion of the “size” of a subproblem

sort the subproblems by size and solve them in size order, smallest first.

The Fibonacci Sequence is an infinite sequence of positive integers, starting at 0

and 1, where each succeeding element is equal to the sum of its two preceding

elements. If we denote the number at position n as Fn, we can formally define the

Fibonacci Sequence as:

Fn = o for n = 0

Fn = 1 for n = 1

Fn = Fn-1 + Fn-2 for n > 1

The Fibonacci Sequence Problem.

The Fibonacci Sequence

therefore, the start of the sequence is:

0, 1, 1, 2, 3, 5, 8, 13, …

So, how can we design an algorithm that returns the nth number in this sequence?

0 1 2 3 4 5 6 7 8 9 10 …

0 1 1 2 3 5 8 13 21 34 55 …

The Fibonacci sequence f0, f1, . . . is recursively defined as follows: •

• base case. f0 = 0 and f1 = 1

• recursive case. for n ≥ 2, fn = fn−1 + fn−2.

Show that the following recursive algorithm for computing the n th Fibonacci

number has exponential complexity with respect to n.

EX: Algorithm 1:

Complexity Time � T(n) = O(2n)

Recursion algorithm

EX: Algorithm 2:

Complexity Time T(n) = O(n)

Tabulation (bottom-up method).

EX: Algorithm 3:

Memoization (top-down method)

Complexity Time T(n) = O(n)

The Knapsack Problem

Given items x1, . . . , xn, where item xi has weight wi and Value vi (if its placed in

the knapsack), determine the subset of items to place in the knapsack in order to

maximize Value, assuming that the sack has capacity W.

Knapsack can be :

1. 0-1 Knapsack

2. Fractional Knapsack

0-1 Knapsack - dynamic programming

V(i , w) = the maximum value that can be obtained from items 1 to i , if Knapsack

has size W.

Case 1 : takes item i

V(i , w) = vi + V(i – 1, W – wi)

Case 2: : does n’t takes item i

V(i , w) = V(i – 1, W)

0-1 Knapsack - dynamic programming

V(i , w) = max {vi + V(i – 1, W – wi) , V(i – 1, W) }

Item i was taken
Item i was not taken

0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0

0

0

0

0

0

0 W -w W

0

i-1

i

n

Example :

0 0 0 0 0 0

0 0 12 12 12 12

0 10 12 22 22 22

0 10 12 22 30 32

0 10 15 25 30 37

item weight value
1 2 12
2 1 10
3 3 20
4 2 15

Capacity W = 5

0

0

1 2 3 4 5

1

2
3

4

EX1: V(1 , 1) = V (0,1) = 0

EX2: V(2 , 4) = max{ 10 + V (2-1,4-١) , V(2-1, 4) }
V(2 , 4) = max{ 10 + V (1,٣) , V(1, 4) }
V(2 , 4) = max{ 10 + 12 , 12 }
V(2 , 4) = max{ 22, 12} = 22

Knapsack = items (4 , 2, 1)
W = 2 + 1 + 2
W = 5 & V = 37

{ i1 , i2, i3, i4}
{ 1 , 1, 0, 1}

