
تامولعملاةینقتةیلكـسلبارطةعماج

Design and Analysis Algorithms
تايمزراوخ ليلحت و ميمصت

ITGS301

Lecture 7 : ةعUاسلا ةرضاNOا

The divide and conquer approach

divide and conquer is perhaps the most commonly used algorithm

design technique in computer science. faced with a big problem P ,

divide it into smaller problems, solve these sub-problems, and

combine their solutions into a solution for P.

•Divide: the problem into a number of sub problems.

•Conquer: the sub problems by solving them recursively.

•Combine: the solutions to the sub problems into the solution for

the original problem.

Merge Sort

Merge sort is based on the divide-and-conquer paradigm.

• Divide: divide the n elements sequence to be stored into subsequences of

n/2 element each.

• Conquer: sort the two subsequences recursively using merge sort.

• Combine: merge the two sorted subsequences to produce the sorted answer.

1. Divide Step

If a given array A has zero or one element, simply return; it is
already sorted. Otherwise, split A[p .. r] into two sub arrays A[p ..
q] and A[q + 1 .. r], each containing about half of the elements of
A[p .. r]. That is, q is the halfway point of A[p .. r].

2. Conquer Step
Conquer by recursively sorting the two sub arrays A[p .. q] and
A[q + 1 .. r].

3. Combine Step

Combine the elements back in A[p .. r] by merging the two sorted
sub arrays A[p .. q] and A[q + 1 .. r] into a sorted sequence. To
accomplish this step, we will define a procedure MERGE (A, p, q, r).

MERGE-SORT(A, p, r)
1. if p < r
2. then q ← (p + r)/2
3. MERGE-SORT(A, p, q)
4. MERGE-SORT(A, q + 1, r)
5. MERGE(A, p, q, r)

ØDivide
ØConquer
ØConquer
ØCombine

Algorithm:

NPUT: Array A and indices p, q, r such that p ≤q ≤r and subarray
A[p ..q] is sorted and subarray A[q + 1 ..r] is sorted. By restrictions
on p, q, r, neither subarray is empty.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p ..r].

The Pseudocode of the MERGE procedure is as follow:

MERGE (A, p, q, r)
1. n1←q−p+1
2. n2←r−q
3. create arrays L[1..n1] and R[1..n2]
4. For i←1to n1
5. Do L[i] ←A[p +i −1]
6. For j←1to n2
7. Do R[j] ←A[q +j]
8. i←1
9. j←1
10. For k←p to r
11. Do if L[i] ≤R[j]
12. Then A[k] ←L[i]
13. i←i+1
14. Else
15. A[k] ←R[j] .
16. j←j+1

example:

For simplicity, assume that n is a power of 2 so that each divide step yields two
sub problems, both of size exactly n/2.
The base case occurs when n = 1.
When n ≥ 2, time for merge sort steps:

Analyzing Merge Sort

Divide: Just compute q as the average of p and r, which takes constant time i.e.
Θ(1).

Conquer: Recursively solve 2 sub problems, each of size n/2, which is 2T(n/2).

Combine: MERGE on an n-element sub array takes Θ(n) time.

Summed together they give a function that is linear in n, which is Θ(n). Therefore,
the recurrence for merge sort running time is

