Cia ol A5 S~ s sl

Desjgn and Analysis Algorithms

Sla ol el 3 psosad

ITGS301

Lecture 7 : daylud! 5,5l

The divide and conquer approach

divide and conquer is perhaps the most commonly used algorithm
design technique in computer science. faced with a big problem P,
divide it into smaller problems, solve these sub-problems, and

combine their solutions into a solution for P.

e Divide: the problem into a number of sub problems.

e Conquer: the sub problems by solving them recursively.

e Combine: the solutions to the sub problems into the solution for

the original problem.

Merge Sort

Merge sort is based on the divide-and-conquer paradigm.

Divide: divide the n elements sequence to be stored into subsequences of
n/2 element each.
Conquer: sort the two subsequences recursively using merge sort.

Combine: merge the two sorted subsequences to produce the sorted answer.

1. Divide Step
L

If a given array A has zero or one element, simply return; it is

already sorted. Otherwise, split A[p .. r] into two sub arrays A|p ..
gl and A[g + 1 .. r], each containing about half of the elements of

Alp .. r]. Thatis, g is the halfway point of A[p .. r].

2. Conquer Step
Conquer by recursively sorting the two sub arrays A[p .. g] and

Alg+1..r].

3. Combine Step
I

Combine the elements back in A[p .. r] by merging the two sorted

sub arrays Alp .. g] and A[g + 1 .. r] into a sorted sequence. To
accomplish this step, we will define a procedure MERGE (A, p, g, r).

Algorithm:

MERGE-SORT(A, p, r)
1. ifp<r
2. thenqg & (p +71)/2 > Divide

3. MERGE-SORT(A, p, q) > Conquer
4. MERGE-SORT(A, g + 1, r)
5

MERGE(A, p, g, 1) > Combine

»Conquer

L
NPUT: Array A and indices p, g, r such that p <g <r and subarray
Alp ..q] is sorted and subarray A[g + 1 ..r] is sorted. By restrictions
on p, g, r, neither subarray is empty.

OUTPUT: The two subarrays are merged into a single sorted
subarray in A[p ..r].

The Pseudocode of the MERGE procedure is as follow:

MERGE (A, p,q, 1)

1.
2.
3.
4.
5.
6.
7.
3.
9

10.
11.
12.
13.
14.
15.
16.

nl<qg-p+1
n2<r—q
create arrays L[1..n1] and R[1..n2]
Fori<-1tonl
Do L[i] <Alp +i 1]
For j<-1to n2
Do R[j] <Alqg +j |
i<-1
<1
Fork&ptor
Do if L[i] <R[j]
Then A[k] &L[i]
i<i+1
Else
Alk] <R[j] .
j<jtl

example.

1213 1 455150367217 23 TS S 20N

15 13 14 15 16

11 12 13 14 15 16 17
2153 '

k

4 4
R 6
J

10 11 12 13 14 15 16 17
2SS N

5
00

Analyzing Merge Sort
For simplicity, assume that n is a power of 2 so that each divide step yields two
sub problems, both of size exactly n/2.

The base case occurs when n =1.
When n > 2, time for merge sort steps:

L]
Divide: Just compute g as the average of p and r, which takes constant time i.e.
O(1).
Conquer: Recursively solve 2 sub problems, each of size n/2, which is 2T(n/2).

Combine: MERGE on an n-element sub array takes ©(n) time.

Summed together they give a function that is linear in n, which is ©(n). Therefore,
the recurrence for merge sort running time is

O(1) ifi=1
2T (n/2)+O©(n) itn>1.

IT(n) :{

I(n)=21T(n/2) +0O(n)

N

subproblems / work dividing

subproblem size and combining

Merge sort: =2, b =12 = now=plo =y
CASE2 = T(n)=0(nlgn).

(o o)
The End . \—/

