Cia ol A5 S~ s sl

Desjgn and Analysis Algorithms

Siles ylys Jeloei 3 epapani

ITGS301

Lecture 6 : dwsludl 3 sl

Master Method
L

The Master Method is used for solving the following types of recurrence
T(n) =a T(n/b) + f(n)

Where a=> 1, b>1, and f is a function, f(n) > 0.

n is the size of the problem.
a is the number of subproblems in the recursion.
n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the

same size.)
f (n) is the sum of the work done outside the recursive calls, which includes the sum of dividing the

problem and the sum of combining the solutions to the subproblems.

Master Theorem:
L]

It is possible to complete an asymptotic tight bound in these three cases:

Idea: compare f(n) with n'og,?

Case 1: T(n) = O(n'o8,?) if f(n)< n log,?
Case 2: T(n) = ©(n'°82 Ig n) if f(n) = n'°8,2
Case 3: T(n) = O(f(n)) if f(n) > nlog2

Example 1:

Solve T(n) = 9T(n/3)+n using Master theorem;

a=9, b=3, f(n) =n
and n'ogba = n'0839 =n? now, f(n) < nlog39
Therefore by case 1, T(n) = ©(n2)

Example 2:

Solve T(n) = T(2n/3)+1 using Master theorem;
a=1, b=3/2, f(n) =1
and nlogba: nlog3/21: n%=1
now, f(n)= ©(n'eg,2),
Therefore by case 2,
T(n) = ©(n'°g2lg n) = ©(Ig n).

The Simple Format of Master Theorem
L

Let T(n)=aT(n/b)+cn*. with a, b, ¢, k are positive constants, and g>1 and b>1,

Case 1: T(n) = O(n'og 2), if a>bk.
Case 2: T(n) = O(n* logn), if a=b*.
Case 3 : T(n) = 0O(n¥), if a<bk.

fin)=06(n)= fin)=0(n)

if f(n) = Theta(g(n)) you can say f(n) = O(g(n)) too!

Example 1:

Solve T(n) = 4T(n/2) + n3. Using the Master method.
a=4, b=2, k=3
bk = 3

a < b* so the case 3 is applied
T(n) = O(n3).

Example 2:

Solve T(n) =2
a= 2, b=2, k=0
bk = 0

T(n/2) + 1 Using the Master method.

".a> bk sothe case 2 is applied

Example 3:

Solve T(n) = 9T(n/3) + n. Using the Master method.
a=9, b=3, k=1
bk =31

a > b* so the case 1 is applied
T(n) = 0O(n'8,2). = O(n?).

Extended Version of Master Theorem

T(n)=aT(%) +0(n*1og n)

=nP P
Master's Theorem F(n) = n® log® n

e Here,a>=1,b>1,k>=0and pis areal number.

Compare : log, a with K

Extended Version of Master Theorem

Case 1:iflogya > K
O (n'os,2)
Case 2 :iflogpa = K
If p>-1thenT(n) =0 (nk logP*ln)
If p=-1thenT(n) =0 (nk log logn)
If p<-1thenT(n) =0 (nk)
Case 3 :iflogya < K
If p>=0 thenT(n) =0 (nk logPn)
If p<OthenT(n) =0 (nk)

Example3 T (n) =2T (n/2) + nlog n

We compare the given recurrence relation with T(n) = aT(n/b) + 8 (nklogPn).

Then,we have-a=2 b=2 k=1 p=1

Now, a =2 and bk=21=2.
Clearly, a = bk
So, we follow case-02.

Since p =1, so we have-
T(n) = 6 (n'°8,2.logP*1n)
T(n) = B (n'°e,2 log™*1n)

Thus, T(n)=2T(n/2)+nlogn==T(n)=nlog2 n (Case 2)

T(n) = 0 (nlog?n)

Inadmissible equations

The following equations cannot be solved using the master theorem:

| n
e T(n) =2"T (5) +n"
a is not a constant; the number of subproblems should be fixed

* T(n) =27 (%) * lo:n

non-polynomial difference between f(n) and nl%8b % (see below; extended version applies)

« T(n) = 0.5T (g) +n

a < 1 cannot have less than one sub problem

o T'(n) = 64T (%) —n’logn

f(n), which is the combination time, is not positive
n
2
case 3 but regularity violation.

e T'(n) = T() +n(2 — cosn)

Master theorem limitations

Can not be used :

T(n) is not monotone, ex: sin n.
T(n) is not polynomial , ex: 2"

a is not constants ex: a = 2"

a<l

Logarithmic rules

log,, (be)

log, (b°)
log,(1/b)
log, (1)
log,(a)

log, (a")

log, /a (b)

log,, (b)log,(c)

log, (a)

log,m (a™)

Recursion Tree Method
L]

Idea: Convert the recurrence into a tree, use this tree to rewrite the function as
sum, and then use techniques to solve recurrence.

The recursion tree generated by 7(n) =a T(n/b) + f(n).

Where

a is number of sub problems that are solved recursively

b is size of each sub problem relative to n

n/b is the size of the input to recursive call.

F(n) is the cost (time) of dividing and recombining the sub problem.

//K%>\\

f(n/b) f(n/b) . af(n/b)

A A

F/bYF(n/byfm/b?) fn/bf(n/b*yf (/B> F(n/bD)f(n/b>)f (n/b>) i a* f (n/b*)

ok e Ml fly ek) MMM

a(1) O(1) ©(1) ©(1) (1) O(1) O(1) O(1) O(1) O(1) .. ()(1)0(1 0(1)...- . On'ou)

nlug,, a

Each node represents the cost of a single sub problem.
Sum up the costs with each level to get level cost.

Costs with each level = a' f(n/b)

for(i=0,1,2,3,...,logb n-1)

where ai is the number of subtrees (or nodes at level i).

but at the last level T(1)=1

n/b,=1-> n=b 2> i=log, n
so at last level when T(1) =1
cost = a' f(n/b,)

=a'. f(1)

=a'. (1)

wheni=log,n > a =38, "
alogb n — nlogba

the sum up all the level cost to get total cost.

log, n—1
Total: ©(n'*#*) + Y @’ f(n/b)

j=0

Example:
solve T(n) =4 T(n/2) + n using recursion tree.

answer

n/22 n/22 n/22

erm eoem em eoem

T(n) = [29°8>1*1 _1/2-1].n+n?
T(n) = [2"°%*—-1/2-1].n+n?
T(n) = [n'°8°-1/2-1].n + n?

T(n)= [n—1]jn +n?

T(n) =n? —n + n?
T(n) =2n’—n

. Total cost = ©(n?).

(o o)
The End . \—/

