

جامعة طر ابلس - كلية تقنية المعلومات

Design and Analysis Algorithms تصميم و تحليل خوارز ميات

ITGS301

المحاضرة السادسة : Lecture 6

Master Method

The Master Method is used for solving the following types of recurrence T(n) = a T(n/b) + f(n)Where a=> 1, b>1, and f is a function, f(n) > 0.

- n is the size of the problem.
- a is the number of subproblems in the recursion.
- n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the same size.)
- f (n) is the sum of the work done outside the recursive calls, which includes the sum of dividing the problem and the sum of combining the solutions to the subproblems.

Master Theorem:

It is possible to complete an asymptotic tight bound in these three cases:

Idea: compare f(n) with n^{log}b^a

Case 1: $T(n) = \Theta(n^{\log_b a})$ if $f(n) < n^{\log_b a}$ Case 2: $T(n) = \Theta(n^{\log_b a} \lg n)$ if $f(n) = n^{\log_b a}$ Case 3: $T(n) = \Theta(f(n))$ if $f(n) > n^{\log_b a}$

Example 1:

Solve T(n) = 9T(n/3)+n using Master theorem;

a=9, b=3, f(n) =n and $n^{\log_b^a} = n^{\log_3^9} = n^2$ now, f(n) < $n^{\log_3^9}$ Therefore by case 1, **T(n)** = $\Theta(n2)$

Example 2:

```
Solve T(n) = T(2n/3)+1 using Master theorem;
a=1, b=3/2, f(n) =1
and n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1
now, f(n) = \Theta(n^{\log_b a}),
Therefore by case 2,
T(n) = \Theta(n^{\log_b a} | g n) = \Theta(| g n).
```

4

The Simple Format of Master Theorem

Let $T(n)=aT(n/b)+cn^k$. with a, b, c, k are positive constants, and $a \ge 1$ and b > 1,

Case 1: $T(n) = O(n^{\log_b a})$,if $a > b^k$.Case 2: $T(n) = O(n^k \log n)$,if $a = b^k$.Case 3 : $T(n) = O(n^k)$,if $a < b^k$.

$$f(n) = \Theta(n) \Rightarrow f(n) = O(n)$$

if f(n) = Theta(g(n)) you can say f(n) = O(g(n)) too!

Example 1:

Solve T(n) = $4T(n/2) + n^3$. Using the Master method. a= 4, b=2, k=3 b^k = 2^3

 $a < b^k$ so the case 3 is applied T(n) = O(n³).

Example 2:

Solve T(n) = 2T(n/2) + 1 Using the Master method. a= 2, b=2, k=0 b^k = 2^{0}

 \therefore a > b^k so the case 2 is applied

T(n) = O(n).

Example 3:

```
Solve T(n) = 9T(n/3) + n. Using the Master method.
a= 9, b=3, k=1
b^{k} = 3^{1}
```

```
a > b^k so the case 1 is applied
T(n) = O(n^{\log_b a}). = O(n^2).
```


Extended Version of Master Theorem

T (n) = a T
$$\left(\frac{n}{b}\right)$$
 + θ (n^k log^pn)
Master's Theorem F(n) = n^p log^p n

• Here, $a \ge 1$, $b \ge 1$, $k \ge 0$ and p is a real number.

Compare : $log_b a$ with K

Extended Version of Master Theorem

```
Case 1: if \log_b a > K
        T(n) = O(n^{\log_{b} a})
Case 2 : if \log_b a = K
         If p > -1 then T(n) = O(n^k \log^{p+1} n)
         If p = -1 then T(n) = O(n^k \log \log n)
         If p < -1 then T(n) = O(n^k)
Case 3 : if \log_{b} a < K
         If p \ge 0 then T(n) = O(n^k \log^p n)
         If p < 0 then T(n) = O(n^k)
```


Example3

$T(n) = 2T(n/2) + n \log n$

We compare the given recurrence relation with $T(n) = aT(n/b) + \theta (n^k \log^p n)$. Then, we have- a = 2 b = 2 k = 1 p = 1

```
Now, a = 2 and b^k = 2^1 = 2.
Clearly, a = b^k.
So, we follow case-02.
```

```
Since p = 1, so we have-
T(n) = \theta (n<sup>log</sup><sub>b</sub><sup>a</sup>.log<sup>p+1</sup>n)
T(n) = \theta (n<sup>log</sup><sub>2</sub><sup>2</sup>.log<sup>1+1</sup>n)
```

```
Thus, T(n) = 2T(n/2) + n \log n \Rightarrow T(n) = n \log 2 n (Case 2)
```

 $T(n) = \theta (nlog^2n)$

Inadmissible equations

The following equations cannot be solved using the master theorem:

• $T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$

a is not a constant; the number of subproblems should be fixed

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$$

non-polynomial difference between f(n) and $n^{\log_b a}$ (see below; extended version applies)

•
$$T(n) = 0.5T\left(rac{n}{2}
ight) + n$$

a < 1 cannot have less than one sub problem

•
$$T(n) = 64T\left(rac{n}{8}
ight) - n^2\log n$$

f(n), which is the combination time, is not positive

•
$$T(n) = T\left(\frac{n}{2}\right) + n(2 - \cos n)$$

case 3 but regularity violation.

Master theorem limitations

Can not be used :

T(n) is not monotone , ex: sin n.

T(n) is not polynomial , ex: 2ⁿ

a is not constants ex: a = 2ⁿ

a < 1

Logarithmic rules

$$\begin{split} \log_a(bc) &= \log_a(b) + \log_a(c)\\ \log_a(b^c) &= c \log_a(b)\\ \log_a(1/b) &= -\log_a(b)\\ \log_a(1) &= 0\\ \log_a(a) &= 1\\ \log_a(a^r) &= r\\ \log_1(a) &= -\log_a(b)\\ \log_1(b) &= -\log_a(b)\\ \log_b(b) &= \log_a(c)\\ \log_b(a) &= \frac{1}{\log_a(b)}\\ \log_a(a^n) &= \frac{n}{m}, \quad m \neq 0 \end{split}$$

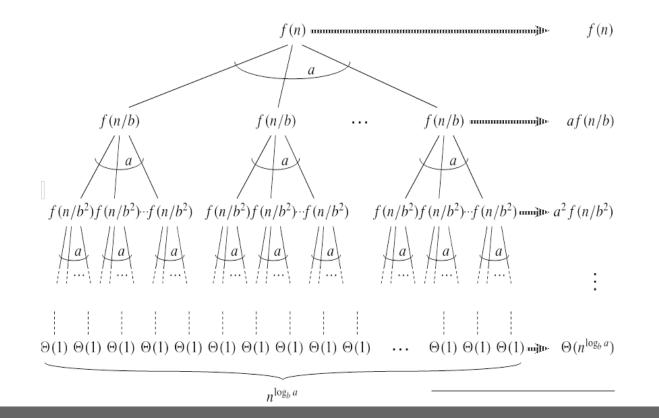
Recursion Tree Method

Idea: Convert the recurrence into a tree, use this tree to rewrite the function as sum, and then use techniques to solve recurrence.

The recursion tree generated by T(n) = a T(n/b) + f(n).

Where

a is number of sub problems that are solved recursively b is size of each sub problem relative to n n/b is the size of the input to recursive call. F(n) is the cost (time) of dividing and recombining the sub problem.



Each node represents the cost of a single sub problem. Sum up the costs with each level to get level cost.

Costs with each level = $a^i f(n/b_i)$

```
for ( i = 0,1,2,3,...,logb n-1)
```

where ai is the number of subtrees (or nodes at level i). but at the last level T(1) = 1f(1)= 1. $\begin{array}{l} n/b_i = 1 \twoheadrightarrow n = b_i \twoheadrightarrow i = \log_b n \\ \text{so at last level when } T(1) = 1 \\ \text{cost} = a^i f(n/b_i) \\ = a^i \cdot f(1) \\ = a^i \cdot (1) \end{array}$

when i = log_b n
$$\rightarrow$$
 aⁱ = a^{log}_b n
a^{logb n} = n^{logb a}

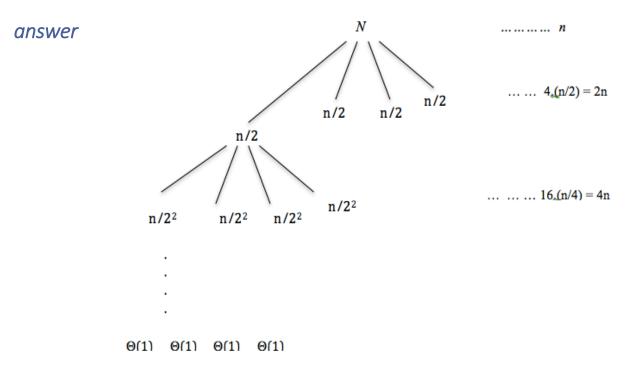
=
$$a^{i}$$
. (1)
= (1). $a^{\log_{b} n}$
= (1). $n^{\log_{b} a}$
= T(n) = θ ($n^{\log_{b} a}$).

the sum up all the level cost to get total cost.

Total:
$$\Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

Example:

solve T(n) = 4 T(n/2) + n using recursion tree.



$$T(n) = [2^{\log_b n-1+1} - 1/2-1].n + n^2$$

$$T(n) = [2^{\log_b n} - 1/2-1].n + n^2$$

$$T(n) = [n^{\log_2 b} - 1/2-1].n + n^2$$

$$T(n) = [n - 1].n + n^2$$

$$T(n) = n^2 - n + n^2$$

$$T(n) = 2n^2 - n$$

∴ Total cost = Θ(n²).

