
ITMC411

Security in mobile
computing

LECTURE 6

Analyzing Android Applications

The Security Model

•No app should be able to access another app's

data without authorization

• also not be able to affect the operation of the

other application adversely or without the

appropriate consent.

•Open and extensible environment

•Android must know who created an app.

• At least to know whether Google made it or not.

Code Signing

Digital Certificates

• Public-key cryptography

• Private key held only by app developer

• Generate key with keytool

• Sign app with jarsigner

• Signature in META-INF directory

Certificate Validation

• Android does not verify the certificate in any

way

• Certificates don't need to come from a trusted

Certificate Authority

• Most are self-signed

• Certificate checked only when app is installed

"security profiles"

Signing Vulnerabilities

• Master Key

• "Extra" Field Length

• "Name" Field Length

Master Key

• Found in 2013 by BlueBox Security

• If two files are in the APK archive with the

same filenames occurred in the zip archive

• Only the first file's hash is checked

• But the second file is actually deployed to the

device

• Arbitrary code execution possible

For more information:

https://github.com/Fuzion24/AndroidZipArbitrage/

https://github.com/Fuzion24/AndroidZipArbitrage/

"Extra" Field Length

• Length field is a 16-bit value

• Java treats it as signed

• Can overflow and become negative

• Allows injection of altered files that pass

signature verification

For more information:

http://www.saurik.com/id/18

http://www.saurik.com/id/18

"Name" Field Length

• Length not checked by the Java verification code

• Allows code injection into the filename

• While passing signature validation

For more information:

http://www.saurik.com/id/19

http://www.saurik.com/id/19

Janus vulnerability

Exploiting Apps vulnerable to Janus (CVE-2017–13156)
https://medium.com/mobis3c/exploiting-apps-vulnerable-to-janus-cve-2017-
13156-8d52c983b4e0

Janus vulnerability
• Janus vulnerability comes from the possibility to add extra bytes to APK

files and to DEX files.
• discovered by GuardSquare in 2017 in Android 8.0

https://medium.com/mobis3c/exploiting-apps-vulnerable-to-janus-cve-2017-13156-8d52c983b4e0

Understanding Permissions

The Android Permission

Model

• Permissions shown at

install time

Permission Protection

Levels

• An app can define a new permission

• When it does, a protection level is assigned to it

• Skype defines this permission

<permissionandroid:name=

"com.skype.raider.permission.C2D_MESSAGE“
android:protectionLevel="signature"/>

Permission Protection Levels

PROTECTION LEVEL DESCRIPTION

normal The default value for a permission. Any application may request
a permission with this protection level.

dangerous Indicates that this permission has the ability to access some
potentially sensitive information or perform actions on the
device. Any application may request a permission with this
protection level.

signature Indicates that this permission can only be granted to another
application that was signed with the same certificate as the
application that defined the permission.

signatureOrSystem This is the same as the signature protection level, except that
the permission can also be granted to an application that came
with the Android system image or any other application that is
installed on the /system partition.

system This permission can only be granted to an application that came
with the Android system image or any other application that is
installed in particular folders on the /system partition.

development This permission can be granted from a privileged context to an
application at runtime

"Signature" Protection

• Recommended for apps that don't intend to share data or

functionality with apps from other developers

• No other apps can access your app's components

This field was deprecated in API level 28.
use signingInfo instead

Malicious Apps

• Can just ask for permissions and hope the user allows it

(social engineering)

• Or include a kernel exploit to gain root, such as Gingerbreak

Application Sandbox

Data Folder Permissions

• Each app runs as its own user

• Unless it requests to run as sharedUserId and has

the same signature as another app

• Some apps allow world-execute

 means that any other files or subfolders inside
this directory with lax permissions set on them
will result in the exposure of these files to any
user (and hence application) on the system.

Sandbox Limitations

• Not a separate virtual machine for each app.

• Only Linux user and group permissions.

Filesystem Encryption

"Full Disk Encryption"

• Prevents data theft from a stolen device

• Available since Android v.3.0

• Not enabled by default in versions prior to 5.0

• Encrypts with AES-CBC, a strong algorithm

• FDE is going away, replaced by file-based encryption.

File-based Encryption

Android Version FBE Support

Android 7.0 (Nougat) Yes

Android 8.0 (Oreo) Yes

Android 9.0 (Pie) Yes

Android 10 (Q) Yes

Android 11 (R) Yes

Android 12 (S) Yes

Android 13 (T) Yes

Encryption Limitations

• SD card not encrypted.

• Only protects data at rest.

• If attacker can execute code on the device,

encryption does nothing.

Generic Exploit Mitigation
Protections

Exploit Mitigations

• Make the underlying OS more secure.

• So even unpatched legacy code is safer.

• Many of these mitigations are inherited from Linux

kernel.

Exploit Mitigations

EXPLOIT
MITIGATION

VERSION
INTROD

UCED
EXPLANATION

Stack cookies 1.5
Protects against basic stack-based overflows by
including a “canary” value after the stack that is
checked.

safe_iop 1.5 Provides a library that helps reduce integer overflows.

dlmalloc
extensions

1.5
Helps prevent double free() vulnerabilities and other
common ways to exploit heap corruptions.

calloc
extensions

1.5
Helps prevent integer overflows during memory
allocations.

Format string
protections

2.3
Helps prevent the exploitation of format string
vulnerabilities.

NX (No eXecute) 2.3 Prevents code from running on the stack or heap.

Partial ASLR
(Address Space
Layout
Randomization)

4.0

Randomizes the location of libraries and other memory
segments in an attempt to defeat a common
exploitation technique called ROP (Return- Oriented
Programming).

PIE

(Position
Independent

Executable)
support

4.1

Supports ASLR to ensure all memory
components are fully randomized.
Effectively ensures that app_process
and linker are randomized in memory
so that these cannot be used as a
source of ROP gadgets.

RELRO

(RELocation Read-
Only) and
BIND_NOW

4.1

Hardens data sections inside a process
by making them read-only. This
prevents common exploitation
techniques such as GOT (Global Offset
Table) overwrites.

FORTIFY_SOURCE

(Level 1)
4.2

Replaces common C functions that are
known to cause security problems
with “fortified” versions that stop
memory corruption from taking place.

Exploit Mitigations

SELinux

(Permissive mode)
4.3

in which permission denials are logged
but not enforced.

SELinux

(Enforcing mode)
4.4

in which permissions denials are both
logged and enforced

FORTIFY_SOURCE

(Level 2)
4.4

Replaces additional functions with
their “fortified” versions.

Exploit Mitigations

Kernel Protections
EXPLOIT

MIGITATION

VERSION

INTRODUCED

EXPLANATION

Removed

setuid/setguid

programs

4.3 Removed all setuid/setgid

programs and added support
for filesystem capabilities
instead.

Restrict setuid

from installed

apps

4.3 The /system partition is
mounted as nosuid for all
processes that were spawned
by zygote. This means that
installed applications cannot
abuse vulnerabilities in any
SUID binaries to gain root
access.

Rooting Explained

Root Access

• By default Android doesn't allow users to use root

• Rooting typically adds a su binary

• Allows elevation to root

• So su itself must run as root

SUID Permissions

• Runs with owner's permissions

• Even when launched by someone else

Security of su

• On Linux, it asks for a
password to allow
elevation

• On Android, it pops up a
box like this

Rooting Methods

• Two main ways of gaining root access on an Android
device

• Using an exploit

• Using an unlocked bootloader

Exploits

• Gingerbreak (EXPLOITING AOSP KERNEL CODE)

• Exploited vold to write to the Global Offset Table (GOT) in

Android 2.2 and 3.0

• Bug in Google's original Android Open Source Project (AOSP)

code from Google.

• Exynos abuse (EXPLOITING CUSTOM DRIVERS)

• Bug in driver for exynos processors, used by Samsung

• Only affected some devices

Exploits

• Samsung Admire (ABUSING FILE PERMISSIONS WITH SYMLINKS)

• Exploited dump files and logs to change pemissions on adb

• Worked only on specific device

• Acer Iconia (EXPLOITING SUID BINARIES)

• Pre-installed SUID binary with code injection vulnerability

Exploits

• Master Key (EXPLOITING ANDROID AOSP SYSTEM CODE)

• Make a modified system app, when two files have the same

name

• Re-install it with the same signature

• Works on most Android versions prior to 4.2

• Towelroot (EXPLOITING LINUX KERNEL VULNERABILITIES ON ANDROID)

• Exploits locks used when threading

• Rooted many devices

Unlocked Bootloader

• Flash new firmware onto device

• A new recovery image, or

• A rooted kernel image containing su

• May void warranty or brick your phone

• popular recovery image :

• ClockWorkMod , CF-Autoroot

Reverse-Engineering
Applications

In the Projects

• Pulling an APK from the phone with adb

• Disassemble with apktool

