
تامولعملاةینقتةیلكـسلبارطةعماج

Design and Analysis Algorithms
تايمزراوخ ليلحت و ميمصت

ITGS301

Lecture 5 : ةسماSTا ةرضاNOا

Algorithm

Iteration Recursion

T(n) = sum of computing
time of all statements

T(n) = recurrence equation

Closed-end equation Closed-end equation

Classify Order

2

What is a Recursion ?

When an algorithm contains a recursion call to itself, we can often describe the

running time by recurrence equation or recurrence. The recurrence describes

the over all running time on the problem of size n in terms of the running time

on smaller inputs. Recurrence is an equation that describes a function in term of

its value on small inputs

Recurrence Relations

Recurrence relations result naturally from the analysis of recursive
algorithms, solving recurrence relations yields a closed-end formula
for calculation of run time.

A recurrence is an equation that is used to represent the running
time of a recursive algorithm

 ءاعدتسلاا ة4تاذ تا4مزراوخلا تقو لثمتل مدختس5 ة4ضا-ر ةلداعم /. ة-راركتلا ةقلاعلا

A recursive algorithm has two cases:
(1) Base Case
(2) Recursive Case

Cases of a Recurrence Relations

General form of a Recurrence Relations

𝑎: the number of times a function calls itself

𝑏: the factor by which the input size is reduced

𝑓(𝑛): the run time of each recursive call

𝑇 𝑛 =)𝑐 𝑛 ≤ 1
𝑎𝑇 𝑛/𝑏 + 𝑓(𝑛) 𝑛 > 1

Base Case

Recursive Case

/* Returns n!= 1*2*3...(n-1)*n for n >= 0. */
int factorial (int n)
{
if (n == 1) return 1;
else
return factorial (n-1) * n;

}

The running time, T(n), can be defined as recurrence equation:

T(n) = 1 n=1
T(n) = T(n-1) + 1 for all n>0

For examples,

Example 1: the recursive Algorithm to compute n! :

Example 2: (binary search tree) a recursive algorithm to search for X
element among n stored elements.

The running time, T(n), can be defined as recurrence equation:

Exercise

1) int add (int x)
{

if (x == 1) return 5;
else

return 1 + add (n-1);
}

T(n) = 1 n=1
T(n) = T(n-1) + 1 for all n>1

Recurrence equation is:

Exercise

2) int power (x , n)
{

if (n == 0)
return 1;

else
if (n == 1)

return x;
else

if (n % 2=0)
return power(x,n/2) * power(x,n/2) ;

else
return return x *power(x,n/2) * power(x,n/2) ;

}

T(n) = 1 n=0
T(n) = 2 n=1
T(n) = 2T(n/2) + 1 for all n>1

Recurrence equation is:

Solving Recurrence Relations

There are many methods to solve the recurrence relations,
some of them are:

• Iteration method.
• The Master method.
• Recursion tree method.

ITERATION METHOD

Iteration method

Iteration is simply the repetition of processing steps. It is used to

computing the running time for any recursive algorithm.

Note: We need to solve the recurrence equation by getting the Closed

End formula, then calculation of running time.

We will show how this method works by some examples:
Example 1 (Factorial)

T(n)=
T(n-1)+1 for all n >0

Answer: Iteration T(n)

１．T(n) = T(n-1) +1

2 Since, T(n-1) = T(n-1-1) +1
= T(n-2) +1

14

1 n=0

then, T(n) = T(n-2)+1+1
= T(n-2) +2

3 Since, T(n-2) = T(n-2-1) +1
= T(n-3) +1

then, T(n) = T(n-3) +1+2
= T(n-3) + 3

4 Since, T(n-3) = T(n-3-1) + 1
= T(n-4) + 1

then, T(n) = T(n-4) +1 + 3
= T(n-4) + 4

15

n T(n) = T(n-n) + n
= T(0) + n
= 1 + n

The closed end formula: T(n) = 1 + n
the running time T(n) = O(n)

Example 2 (Binary Search)

Find the closed end formula using the iteration method.

16

1 n=1
T(n)=

T(n/2) + 1 for all n >1

answer

1 T(n) = T(n/2) + 1

2 Since, T(n/2) = T(n/4) +1
Then, T(n) = T(n/4) +1+1

= T(n/4) + 2

17

3 Since, T(n/4) = T(n/8) + 1
T(n/22) = T(n/23) + 1

Then, T(n) = T(n/23) + 1+2
= T(n/23) + 3

.

.
n T(n) = T(n/2k) + k

Since T(n) = 1 suppose that n/2k

n = 2k k=log2 n k= lg n
T(n) = T(1) + k

= T(1) + lg n

18

The closed end formula = 1 +lg n
The running time T(n) is O(lg n).

Example 3:

0 n=0
T(n)=

2T(n-1) + 1 for all n >0

１．T(n) = 2T(n-1) + 1

answer

19

2 T(n-1) = 2T(n-2) + 1
Then T(n)= 2[2T(n-2) + 1] +1

= 4T(n-2)+ 2+1

3 T(n-2) = 2T(n-3) + 1
Then T(n) = 4[2T(n-3) + 1] +2+1

= 8T(n-3) + 4+ 2+ 1
= 23 T(n-3) + 22 + 2+ 1

.

.
n T(n) = 2k T(n-k) + 2k-1 + 2k-2 + …. + 21 + 20

When n=0

20

n – k = 0 -> k = n

T(n) = 2n T(n-n) + 2n-1 + 2n-2 + …. + 21 + 20

= 2n . T(0) + �n-1 2k

= 2n.0 + [2n-1+1 -1/2-1]
= 2n.0 + [2n -1]
= 2n -1

The closed end formula = 2n -1

The running time = O(2n)

21

