

جامعة طرابلس - كلية تقنية المعلومات

Design and Analysis Algorithms تصمیم و تحلیل خوارزمیات

ITGS301

المحاضرة الثالثة: Lecture 3

LIMIT TECHNIQUE FOR COMPARING GROWTH RATES

Another way of checking if a function f(n) grows faster or slower than another function g(n) is to divide f(n) by g(n) and take the limit $n \to \infty$ as follows

$$\lim_{n o\infty}rac{f(n)}{g(n)}$$

If the limit is 0, f(n) grows faster than g(n). If the limit is ∞ , f(n) grows slower than g(n).

We use limits as n tends to infinity. That is,

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, $f(n) = O(g(n))$.

If
$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$
, $f(n)=\Omega(g(n))$

If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
, $f(n) = \Omega(g(n))$.
If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = C$, and $C \neq 0$ $f(n) = \Theta(g(n))$.

USING THE LIMIT METHOD: EXERCISE 1

• Compare growth rate of n^2 and $n^2 - 7n - 30$

$$\lim_{n\to\infty}\frac{n^2-7n-30}{n^2}$$

$$= \lim_{n\to\infty} \left(1 - \frac{7}{n} - \frac{30}{n^2}\right)$$

$$\circ = 1$$

• So
$$n^2 - 7n - 30 \in \Theta(n^2)$$

Examples:

$$f(n) = \sqrt{n}$$

$$g(n) = 2n$$

$$\frac{f(n)}{g(n)} = \frac{\sqrt{n}}{2n} = \frac{1}{2\sqrt{n}} \xrightarrow[n \to \infty]{} 0$$

$$5n^2 - 4n - 100$$
 $g(n) = n^2$

$$\frac{f(n)}{g(n)} = \frac{5n^2 - 4n - 100}{n^2} = 5 - \frac{4}{n} - \frac{100}{n^2} \xrightarrow[n \to \infty]{} 5$$

Examples:

$$f(n) = \sqrt[3]{n} \qquad \qquad g(n) = \sqrt{n}$$

$$\frac{f(n)}{g(n)} = \frac{\sqrt[3]{n}}{\sqrt{n}} = \frac{n^{\frac{1}{3}}}{n^{\frac{1}{2}}} = n^{\frac{1}{3} - \frac{1}{2}} = n^{-\frac{1}{6}} = \frac{1}{n^{\frac{1}{6}}} \xrightarrow[n \to \infty]{} 0$$

$$f(n) = n^2 g(n) = n \log n$$

$$\frac{f(n)}{g(n)} = \frac{n^2}{n \log n} = \frac{n}{\log n} \xrightarrow[n \to \infty]{} \infty$$

Q

Analysis of Time Complexity

- (1) Determine the **input size** (n)
- (2) Determine the basic operations
- (3) Let $\boldsymbol{c(n)}$ be the maximum count of the basic operations as function of n
- (4) Let $oldsymbol{d(n)}$ be the minimum count of the basic operations as function of n
- (5) The **upper bound** of the time complexity is O(c(n))
- (6) The **lower bound** of the time complexity is $\Omega(d(n))$
- (7) If $O(c(n)) = \Omega(d(n))$, then the **exact bound** of the time complexity is $\Theta(c(n))$

Main Rules of Asymptotic Notations

1. Drop constant factors

- $\checkmark \quad 6n 3 = O(n)$
- \checkmark $2n^2 + 1000 = O(n^2)$
- $\checkmark \quad 4n\log n + 10 = O(n\log n)$

2. Drop lower-order terms

- $\sqrt{n^3 + n^2 + n + 1} = O(n^3)$
- \checkmark $n + \log n = O(n)$
- \checkmark $n \log n + n = O(n \log n)$
- $\checkmark \log n + \log \log n = O(\log n)$

Pig Oh Rules:

- 1. Ignore constant factors.
- 2. IF we have 2 functions f1(n), f2(n) and f1(n) = O(g1(n)), f2(n) = O(g2(n)) then

$$f1(n) * f2(n) = O(g1(n) * g2(n)).$$

Ex:
$$f1(n) = O(n^2)$$
 and $f2(n) = O(n)$
 $f1(n) * f2(n) = O(n^2 * n)$
 $= O(n^3)$


```
3. if we have 2 functions f1(n), f2(n) and f1(n) = O(g1(n)),
f_{2}(n) = O(g_{2}(n)) then
   f1(n) + f2(n) = Max(g1(n), g2(n))
                = O(g1(n) + g2(n)).
             Ex: f1(n) = O(n^2) and f2(n) = O(n^3)
                f1(n) + f2(n) = Max(O(n^2), O(n^3))
                           = O(n^2) + O(n^3)
                           = O(n^3).
```


Analysis of Time Complexity

Counting the Number of Operations

- 1. The running time equals the number of primitive operations (steps) executed before termination.
- 2. Each operation takes a certain time.

☐ Analysis of Loops:

 Simple Loops: The running time of a for loop is at most the running time of the statements inside the loop times the number of iterations.

[N]

Example 1 : O(n) Loops

```
sum = 0;
 for( i = 0; i < n; i++)
 sum = sum + i;
Analyzing: sum = 0; excuted only 1 time :: O(1)
            for(i = 0; i < n; i++)
                           // i = 0; executed only once: O(1)
                                               //i < n; n + 1 times
                                                                         O(n)
                                               // i++ n times
                                                                          O(n)
               total time of the loop heading:
                                   O(1) + O(n) + O(n) = O(n)
                sum = sum + i; // executed n times,
                                                          O(n)
               The time required for this algorithm equals: O(1) + O(n) + O(n) = O(n).
```

Example 2 O(n) Loops

```
int sum = 0;
int i = 0;
while (i < n) {
 sum++;
  i++;
Analyzing:
  int sum = 0; // 1 time
  int i = 0; // 1 time
  while (i < n) { // n+1 times
   sum++; // n times
        // n times
   i++;
                   Hence, T(n) = 3*n+3 = O(n)
```


Example 3 O(1) Loops

A loop or recursion that runs a constant number of times is considered as O(1).

```
Int sum = 0;
for (int i = 1; i <= 10; i++) {
    sum = sum + a[i]
}</pre>
```


Nested Loop:

Time complexity of nested loops is equal to the number of times the innermost statement is executed.

Example 4 O(n²) Loops

```
sum = 0;

for( i = 0; i < n; i++)

for( j = 0; j < n; j++)

sum++;

The running time = O(1) + O(n*n) + O(n)

=O(1) + O(n^2) + O(n)

= O(n^2)
```


Consecutive program fragments

The total running time is the maximum of the running time of the individual fragments

Example 5 O(n²) Loops

```
sum = 0;
for( i = 0; i < n; i++)
    sum = sum + i;

sum = 0;
for( i = 0; i < n; i++)
    for( j = 0; j < 2n; j++)
        sum++;</pre>
```


If statement

```
IF Condition
$1;
else
$2;
```

The running time is the maximum of the running times of **S1** and **S2**.

Exercises

What is time complexity of following?

```
1. if (a[i] == x)
return 1;
else
return -1;
```

```
2. sum = 0; for(i = 0; i < 2n; i++)

for(j = 0; j < n; j++)

for(k = 0; k < n; k++)

sum++;
```


Exercises

```
3. int sum = 0;
int i = 0;
while (i < n) {
int a = 0;
while (a < i) {
sum++;
a++;
}
i++;
}
```


Exercises

What is time complexity of fun()?

```
int fun(int n){
int count = 0;
for (int i = 1; i <= n; i++) {
    for (int j = i; j <= n; j++) {
        count = count + 1;
    }
}
return count;
}</pre>
```


Worst and Best Case Analysis

Worst Case Analysis

- ✓ In worst case analysis, we calculate upper bound on running time of an algorithm.
- ✓ We must know the case that causes maximum number of operations to be executed.

4

Example 6: Worst Case Analysis of Linear Search

- \checkmark For Linear Search, the worst case happens when the element to be searched (x) is not present in the array.
- ✓ In this case, the algorithm compares it with all the elements of A one by one.
- \checkmark Therefore, worst case time complexity of linear search would be O(n).

```
// INPUT: an array A[1..n] of n integers and an interger x
// OUTPUT: Index i if A[i] = x for 1 <= i <= n, and 0 otherwise
int LinearSearch(int A[], int n, int x) {
for (int i = 1; i <= n; i++) {
    if (A[i] == x) return i;
}
return 0;
}</pre>
```


Worst and Best Case Analysis

Best Case Analysis

- ✓ In best case analysis, we calculate lower bound on running time of an algorithm.
- ✓ We must know the case that causes minimum number of operations to be executed.

4

Example 7: Best Case Analysis of Linear Search

- \checkmark In the linear search algorithm, the best case occurs when x is present at the first location.
- \checkmark The number of operations in the best case is constant (not dependent on n).
- \checkmark So, time complexity in the best case would be $\Omega(1)$

```
// INPUT: an array A[1..n] of n integers and an interger x
// OUTPUT: Index i if A[i] = x for 1 <= i <= n, and 0 otherwise
int LinearSearch(int A[], int n, int x) {
for (int i = 1; i <= n; i++) {
    if (A[i] == x) return i;
}
return 0;
}</pre>
```


Logarithms and properties

In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm:
$$\lg n = \log_2 n$$

Natural logarithm:
$$\ln n = \log_e n$$

$$\lg^k n = (\lg n)^k$$

$$\lg\lg n = \lg(\lg n)$$

$$\log x^y = y \log x$$

$$\log xy = \log x + \log y$$

$$\log \frac{x}{y} = \log x - \log y$$

$$a^{\log_b x} = x^{\log_b a}$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Some Simple Summation Formulas

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

formulas:

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$

$$1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$$

