

جامعة طرابلس ـ كلية تقنية المعلومات

Design and Analysis Algorithms تصميم و تحليل خوارزميات

ITGS301

المحاضرة الثالثة: Lecture 3

LIMIT TECHNIQUE FOR COMPARING GROWTH RATES

Another way of checking if a function $f(n)$ grows faster or slower than another function $g(n)$ is to divide $f(n)$ by $g(n)$ and take the limit $n \to \infty$ as follows

$\lim_{n\to\infty}\frac{f(n)}{g(n)}$

If the limit is 0, $f(n)$ grows faster than $g(n)$. If the limit is ∞ , $f(n)$ grows We use limits as n tends to infinity. That is, slower than $g(n)$. F

$$
f \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0, \qquad f(n) = O(g(n)).
$$

If
$$
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty
$$
, $f(n) = \Omega(g(n))$.
If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = C$, and $C \neq 0$ $f(n) = \Theta(g(n))$.

USING THE LIMIT METHOD: EXERCISE 1

- Compare growth rate of n^2 and $n^2 7n 30$
- $\lim_{n\to\infty}\frac{n^2-7n-30}{n^2}$
- $= \lim_{n \to \infty} (1 \frac{7}{n} \frac{30}{n^2})$
- \circ = 1
- So $n^2 7n 30 \in \Theta(n^2)$

Examples:

$$
f(n) = \sqrt{n} \qquad \qquad g(n) = 2n
$$

$$
\frac{f(n)}{g(n)} = \frac{\sqrt{n}}{2n} = \frac{1}{2\sqrt{n}} \xrightarrow[n \to \infty]{} 0
$$

 \mathbf{r} ×.

$$
5n^2 - 4n - 100 \ \ g(n) = n^2
$$

 $\overline{}$

$$
\frac{f(n)}{g(n)} = \frac{5n^2 - 4n - 100}{n^2} = 5 - \frac{4}{n} - \frac{100}{n^2} \xrightarrow[n \to \infty]{} 5
$$

Examples:

$$
f(n) = \sqrt[3]{n} \qquad \qquad g(n) = \sqrt{n}
$$

$$
\frac{f(n)}{g(n)} = \frac{\sqrt[3]{n}}{\sqrt{n}} = \frac{n^{\frac{1}{3}}}{n^{\frac{1}{2}}} = n^{\frac{1}{3} - \frac{1}{2}} = n^{-\frac{1}{6}} = \frac{1}{n^{\frac{1}{6}}} \xrightarrow[n \to \infty]{} 0
$$

$$
f(n) = n^2 \qquad \qquad g(n) = n \log n
$$

$$
\frac{f(n)}{g(n)} = \frac{n^2}{n \log n} = \frac{n}{\log n} \xrightarrow[n \to \infty]{} \infty
$$

(1) Determine the **input size** (n)

(2) Determine the basic operations

(3) Let $c(n)$ be the maximum count of the basic operations as function of n

(4) Let $\boldsymbol{d}(\boldsymbol{n})$ be the minimum count of the basic operations as function of \boldsymbol{n}

(5) The upper bound of the time complexity is $O(c(n))$

(6) The lower bound of the time complexity is $\Omega(d(n))$

(7) If $O(c(n)) = \Omega(d(n))$, then the exact bound of the time complexity is $\Theta(c(n))$

Main Rules of Asymptotic Notations

- 1. Drop constant factors
	- \checkmark 6 $n 3 = O(n)$
	- $\sqrt{2n^2 + 1000} = O(n^2)$
	- \checkmark 4 n log $n + 10 = O(n \log n)$

2. Drop lower-order terms

- \mathcal{N} $n^3 + n^2 + n + 1 = O(n^3)$
- \checkmark $n + \log n = O(n)$
- \checkmark $n \log n + n = O(n \log n)$
- \checkmark log $n + \log \log n = O(\log n)$

Big Oh Rules:

- 1. Ignore constant factors.
- 2. IF we have 2 functions $f1(n)$, $f2(n)$ and $f1(n) = O(g1(n))$, $f2(n) = O(g2(n))$ then

```
f1(n) * f2(n) = O (g1(n) * g2(n)).
```

```
Ex: f1(n) = O(n^2) and f2(n) = O(n)f1(n) * f2(n) = O(n^2 * n)= O(n^3)
```


```
3. if we have 2 functions f1(n), f2(n) and f1(n) = O(g1(n)),
f2(n) = O(g2(n)) then
   f1(n) + f2(n) = Max(g1(n), g2(n))= O (g1(n) + g2(n)).Ex: f1(n) = O(n^2) and f2(n) = O(n^3)f1(n) + f2(n) = Max(O(n^2), O(n^3))= O(n^2) + O(n^3)
```

```
= O(n^3).
```


Counting the Number of Operations

- 1. The running time equals the number of primitive operations (steps) executed before termination.
- 2. Each operation takes a certain time.

q*Analysis of Loops:*

 \circ Simple Loops: The running time of a for loop is at most the running time of the statements inside the loop times the number of iterations.

Example 1 : O(n) Loops

 $sum = 0;$ for($i = 0; i < n; i++)$ $sum = sum + i;$ Analyzing : $sum = 0$; excuted only 1 time :: $O(1)$ for($i = 0; i < n; i++)$ // $i = 0$; executed only once: $O(1)$ // $i < n$; n + 1 times $O(n)$ $//$ i++ n times $O(n)$ total time of the loop heading: $O(1) + O(n) + O(n) = O(n)$ sum = sum + i; // executed n times, $O(n)$

The time required for this algorithm equals: $O(1) + O(n) + O(n) = O(n)$.

Example 2 O(n) Loops

```
int sum = 0; \frac{1}{1} time
  int i = 0; // 1 time
   while (i < n) { // n+1 times
   sum++; // n times
   i++; // n times
   }
int sum = 0;
int i = 0;
while (i < n) {
 sum++; 
  i++;}
Analyzing :
```

```
Hence, T(n) = 3*n+3 = O(n)
```


Example 3 O(1) Loops

A loop or recursion that runs a constant number of times is considered as O(1).

```
Int sum = 0;
for (int i = 1; i <= 10; i++) {
   sum = sum + a[i]}
```


o Nested Loop:

Time complexity of nested loops is equal to the number of times the innermost statement is executed.

Example 4 O(n²) Loops

```
sum = 0;for( i = 0; i < n; i++)
  for( j = 0; j < n; j++)
```
sum++;

```
The running time = O(1) + O(n*n) + O(n)=O(1) + O(n^2) + O(n)= O(n^2)
```


o Consecutive program fragments

The total running time is the maximum of the running time of the individual fragments

Example 5 O(n²) Loops

```
sum = 0;for(i = 0; i < n; i++)sum = sum + i;
```

```
sum = 0;for(i = 0; i < n; i++)for(j = 0; j < 2n; j++)sum++;
```


o If statement

IF Condition

- $S1;$ else
	- $S2;$

The running time is the maximum of the running times of S1 and S2.

Exercises

What is time complexity of following ?

1. if $(a[i] == x)$ return 1 ; else return -1 ;

```
2. sum = 0; \text{for}(i = 0; i < 2n; i++)for(j = 0; j < n; j++)for(k = 0; k < n; k++)
       sum++;
```


Exercises

4. Val= 0;
for(
$$
i = 0
$$
; $i \le n$; $i*2$)
Val= Val + i ;

Exercises

What is time complexity of fun()?

```
int fun(int n){
\mathbf{1}int count = 0;
2
       for (int i = 1; i <= n; i++) {
3
         for (int j = i; j \le n; j++)\Deltacount = count + 1;5
6
\overline{7}return count;
8
\boldsymbol{9}
```


Worst and Best Case Analysis

UU Worst Case Analysis

- \checkmark In worst case analysis, we calculate upper bound on running time of an algorithm.
- \checkmark We must know the case that causes maximum number of operations to be executed.

Example 6: Worst Case Analysis of Linear Search

- \checkmark For Linear Search, the worst case happens when the element to be searched (x) is not present in the array.
- \checkmark In this case, the algorithm compares it with all the elements of A one by one.
- \checkmark Therefore, worst case time complexity of linear search would be $O(n)$.

```
// INPUT: an array A[1..n] of n integers and an interger x
\mathbf{1}// OUTPUT: Index i if A[i] = x for 1 \le i \le n, and 0 otherwise
2
    int LinearSearch(int A[], int n, int x) {
3
     for (int i = 1; i \le n; i++)\overline{4}if (A[i] == x) return i;
5
6
7
      return 0;
8
```


Worst and Best Case Analysis

<u>le</u> Best Case Analysis

- \checkmark In best case analysis, we calculate lower bound on running time of an algorithm.
- \checkmark We must know the case that causes minimum number of operations to be executed.

Example 7: Best Case Analysis of Linear Search

- \checkmark In the linear search algorithm, the best case occurs when x is present at the first location.
- \checkmark The number of operations in the best case is constant (not dependent on n).
- \checkmark So, time complexity in the best case would be $\Omega(1)$

```
// INPUT: an array A[1..n] of n integers and an interger x
\mathbf{1}// OUTPUT: Index i if A[i] = x for 1 \le i \le n, and 0 otherwise
2
    int LinearSearch(int A[], int n, int x) {
3
      for (int i = 1; i <= n; i++) {
\overline{4}if (A[i] == x) return i;
5
6
\overline{7}return 0;
8
```


Logarithms and properties

In algorithm analysis we often use the notation "log n" without specifying the base

 $\log x^y = y \log x$ Binary logarithm: $\lg n = \log_2 n$ $\log xy = \log x + \log y$ Natural logarithm: $\ln n = \log_e n$ $\log \frac{x}{y} = \log x - \log y$ $lg^k n = (lg n)^k$ $lg\lg n = lg(lgn)$ $a^{\log_b x} = x^{\log_b a}$ $\log_b x = \frac{\log_a x}{\log_a b}$

Some Simple Summation Formulas

- **Arithmetic series:** \bullet
- **Geometric series:** ٠
	- $-$ Special case: $x < 1$:
- **Harmonic series:** \bullet
- **Other important** ٠

formulas:

$$
\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}
$$

$$
\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)
$$

$$
\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n
$$

$$
\sum_{k=1}^n \lg k \approx n \lg n
$$

 $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$

 $\sum_{k=1}^n k^p = 1^p + 2^p + \dots + n^p \approx \frac{1}{p+1} n^{p+1}$ 1^2 + 2² + 3² + ... + n² = n(n+1)(2n+1)/6

