Cia ol A5 S~ s sl

Desjgn and Analysis Algorithms

Sla ol el 3 psosad

ITGS301
Lecture 3 :a0L) 5, 5=l

LIMIT TECHNIQUE
FOR COMPARING GROWTH RATES

Another way of checking if a function f(n) grows faster or slower than another
function g(n) is to divide f(n) by g(n) and take the limit n — oo as follows
f(n)

lim —=
n—00 g(n)

If the limit is 0, f(n) grows faster than g(n). If the limit is co, f(n) grows . use limits as 1 tends to infi inity. That is.

lower the .
slower than g(n) If]imf{,n) -0 fn)=0(g(n).

== g(n)

limf(") =0, f(n)=Q(g(n).

== g(n)

! limM =C,and C=0 f(n)=0(g(n)).
n—s0 g(n)

USING THE LIMIT METHOD: EXERCISE 1

Compare growth rate of n? and n? — 7n — 30

> 7 30
= lim (1—;—5)

n—0Co

=1
Son? —7n—30 € O(n?)

Examples:

g(n) =2n

fn) a1 >
g(n) _ 2n 2n noee

sn? —4n —100 g(n) = n?

g(n)

f(n) _

g(n) nlogn ~ logn n—oo

Q Analysis of Time Complexity

(1) Determine the input size (n)

(2) Determine the basic operations

(3) Let €(1) be the maximum count of the basic operations as function of n
(4) Let d(m) be the minimum count of the basic operations as function of n
(5) The upper bound of the time complexity is O(c(n))

(6) The lower bound of the time complexity is (d (1))

(7)1f0(c(n)) = Q(d(n)), then the exact bound of the time complexity is ©(c(n))

Q Main Rules of Asymptotic Notations

1. Drop constant factors

v 6n-—3=0(n)

v 2n% + 1000 = O(n?)

v 4nlogn + 10 = O(nlogn)
2. Drop lower-order terms

v n*+n?t+n+1=0(n3
n +logn = O(n)
nlogn +n = 0O(nlogn)
logn + loglogn = O(logn)

Q Big Oh Rules:

[
1. lIgnore constant factors.

2 . IF we have 2 functions f1(n), f2(n) and f1(n) = O(g1(n)), f2(n) = O(g2(n))
then
f1(n) * f2(n) = O (g1(n) * g2(n)).

Ex: f1(n) = O(n?) and f2(n) = O(n)
f1(n) * f2(n)=0(n** n)
= 0(n3)

[
3. if we have 2 functions f1(n) , f2(n) and f1(n) = O(gl(n)) ,

f2(n) = O(g2(n)) then
f1(n) + f2(n) = Max(gl(n), g2(n))

=0 (gl(n) +g2(n)).

Ex: f1(n) = O(n?) and f2(n) = O(n3)
f1(n) + f2(n) = Max(O(n?) , O(n3))
= 0(n?) + O(n3)
= 0(n3).

Q Analysis of Time Complexity

Counting the Number of Operations

1. The running time equals the number of primitive operations (steps) executed before
termination.

2. Each operation takes a certain time.

JAnalysis of Loops:

o Simple Loops: The running time of a for loop is at most the running time of the
statements inside the loop times the number of iterations.

Example 1 : O(n) Loops

sum =0;
for(i=0;i<n;i++)

sum =sum+i;

Analyzing: sum=0; excuted only 1time :: O(1)
for(i=0;i<n;i++)
// i=0; executed only once: O(1)
//i<n; n+1times
/] i++ n times

total time of the loop heading:
O(1) + O(n) + O(n) = O(n)

sum =sum +i; // executed n times, O(n)

The time required for this algorithm equals: O(1) + O(n) + O(n) = O(n).

[Example 2 O(n) Loops

int sum =0;

inti=0;

while (i < n) {
sum++;

Analyzing :

int sum =0;
inti=0;

while (i < n) {
sum++;
i++;

}

// 1time

// 1time
// n+1 times
// n times
// n times

Hence, T(n) = 3*n+3 = O(n)

[} Example 3 O(1) Loops

[
A loop or recursion that runs a constant number of times is considered as O(1).

Int sum = 0;
for (int 1 = 1; i <= 10; i++) {
sum = sum + a[i]

}

o Nested Loop:

[
Time complexity of nested loops is equal to the number of times the innermost statement
is executed.

[&¥} Example 4 O(n2) Loops

sum =0;
for(i=0;i<n;i++)
for(j=0;j<n;j++)

sumM++;

The running time = O(1) + O(n*n) + O(n)
=0(1) +O(n?) + O(n)
=0(n?)

o Consecutive program fragments

[
The total running time is the maximum of the running time of the individual fragments

[&¥)Example 5 O(n?) Loops

sum = 0;
for(i=0;i<n;i++)
sum=sum +i;

sum = 0;
for(i=0;i<n;i++)
for(j=0;j<2n; j++)
sum-++,

o If statement

IF Condition
S1;

else
S2;

The running time is the maximum of the running times of S1 and S2.

Exercises

What is time complexity of following ?

1. if(a[1] = x)
return 1;

else
return -1;

2. sum = 0; for(1=0;1<2n; 1t+)
for(j=0;j<n;jt+)
for(k = 0; k <n; k++)
sum-+t;

Exercises

mnt sum = 0;
mt1=0;
while (1 <n) {
mta=0;
while (a<1) {
sum-+-+;

4. Val=0:
for(1=0.1<=n;1*2)
Val=Val + 1.

Exercises

What is time complexity of fun()?

int fun(int n){
int count = 0;
for (int 1 = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
count = count + 1;
}
}

return count;

}

1
2
3
4
5
6
7
8
9

Worst and Best Case Analysis

Worst Case Analysis

v' In worst case analysis, we calculate upper bound on running time of an
algorithm.

v We must know the case that causes maximum number of operations to be
executed.

EY Example 6: Worst Case Analysis of Linear Search

v’ For Linear Search, the worst case happens when the element to be searched (x) is not
present in the array.

v" In this case, the algorithm compares it with all the elements of A one by one.

v’ Therefore, worst case time complexity of linear search would be O(n).

// INPUT: an array A[l..n] of n integers and an interger x
// OUTPUT: Index i if A[i] = x for 1 <= i <= n, and @ otherwise
int LinearSearch(int A[]l, int n, int x) {
for (int i = 1; i <= n; i++) {
if (A[i] == x) return i;
}
return 0;

}

0O NOULL A WN PR

Worst and Best Case Analysis

LE Best Case Analysis

v' In best case analysis, we calculate lower bound on running time of an
algorithm.

v We must know the case that causes minimum number of operations to be
executed.

EY Example 7: Best Case Analysis of Linear Search

[
v In the linear search algorithm, the best case occurs when x is present at the first
location.

v" The number of operations in the best case is constant (not dependent on n).

v’ So, time complexity in the best case would be Q(1)

// INPUT: an array A[l..n] of n integers and an interger x
// OUTPUT: Index i if A[i] = x for 1 <= 1 <= n, and @ otherwise
int LinearSearch(int A[]l, int n, int x) {
for (int i = 1; i <= n; i++) {
if (A[i] == x) return i;
}
return 0;

}

1
2
3
4
5
6
7
8

Logarithms and properties

In algorithm analysis we often use the notation “log n”

without specifying the base

Binary logarithm: lgn — log2 n logxy = _vlogx

Natural logarithm: In#n =log_n logxy = logx +logy

1g* n = (1gn)* logi = logx—logy
lglgn =1g(lgn) Y

alogbx _ xlogba

log, x = log, x
log b

Some Simple Summation Formulas

Arithmetic series:

Geometric series:
- Special case: x < 1:

Harmonic series:

Other important

formulas:

Zk=1+2+"'+"= n(n +1)

k=l

xn+1 _ l

Sxf=l+x+x’+ +x"= (x=1)

k=0 x—1

= 1
t— P
,Z.;x o 1-x

Zl=1+l+_"+l ~Inn
ok 2 n

> Igk ~nlgn

k=l

- y P P P 1
Zk =17+22 4+ _+n’ =~

=) p+1

n?!

12+22+ 32+ _+n?2= n(n+1)(2n+1)/6

(o o)
The End . \—/

