Cia ol A5 S~ s sl

Design and Analysis Algorithms
eyl L= (otpnd

ITGS301

Lecture 2 :45L0 8 sl

Order of growth

The fundamental reason is that for large values of n, any function that contains an n? term
will grow faster than a function whose leading term is n. The leading term is the term
with the highest exponent.

we expect an algorithm with a smaller leading term to be a better algorithm for large

problems, but for smaller problems, there may be a crossover point where another
algorithm is better.

An order of growth is a set of functions whose asymptotic growth behavior is considered
equivalent. For example, 2n, 100n and n + 1 belong to the same order of growth, which is
written O(n) in Big-Oh notation and often called linear because every function in the set
grows linearly with n.

LEl What is Order of Growth?

How the time/space complexity of an algorithm grows/changes with the input

size

$alll Jara g 5

daa)l ga) g

(Constant) <&

(A) Ay Al i

(Linear) ba

(B) dxe o)Al i

ol
(Exponential)

(K) Ayl sall i

Ol eox> 35 2o dxn))lgadl doluw 9l CBg iS5 Juae

LEl What is Order of Growth?
L

Algorithm 30 Minimum and Maximum Elements Algorithm 29 Minimum and Maximum Elements

Input: An array A[l..n] of n elements. Input: An array A[l..n] of n elements sorted in ascending order.
Output: The minimum and maximum elements in A Output: The minimum and maximum elements in A

1: min + A[l] 1: min + A[l]

2: maz +— A[l] 2: max + A[n]

3: for i+ 2tondo 3: return (min, maz)
if (A[i] < min) then

min < Alil

end if

if (A[i] > maz) then
mazx + Ali]

9: end if

10: end for

11: return (min, mazx)

4:
5:
6:
7
8:

B Orders of Common Functions

A list of classes of functions that are commonly encountered when analyzing algorithm:s.

constant 0O(1)
logarithmic O(log, N)

Linear O(N) [Ofn!). (™), o) Worst
N log n O(n log, N)

Quadratic O(N?)
Cubic O(N3)
Exponential O(2")

Factorial O(n!)

O(1) < O(log n) < O(n) < O(nlogn) < O(n*) < O(n*) < O(2")

Order of growth

The following table shows some of the orders of growth that appear most
commonly in algorithmic analysis.

For the logarithmic terms, the base of the logarithm doesn’t matter; changing
bases is the equivalent of multiplying by a constant, which doesn’t change the
order of growth.

Similarly, all exponential functions belong to the same order of growth
regardless of the base of the exponent.

Exponential functions grow very quickly, so exponential algorithms are only
useful for small problems.

|»* Order of growth

Name Function

Constant C

Double Logarithmic log log n

Logarithmic 10g n
Fractional Power no<c<li1

)
Linear O(n)
Loglinear n log N and log n!
Quadratic n2
Polynomial ncc>1

)

Exponential n
p c,c>1
Factorial

Super Exponential

Common order-of-growth classifications Running time complexity

constant | logarithmic quadratic exponential

0O(1) | O(log n) on?) o2
1 1
4 8
16 64

64 512 256
4,096 65536
32,768 (4.294.967.,296

262.144| 1.84x10'°

Time to complete (in operations)

Size of input data

Exercise 1

Arrange the functions in increasing asymptotic order

(a) n1/3

(b) em

(c) n7/4

(d)n logn
(€)1.0000001™

nA(7/4)

3

11

38

128

431

1448

O-notation (Big-Oh)

e Big O Notation (Big-Oh)
Definition: Let f(n) , g(n) be functions, we say f(n) is of order g(n) if there

is a constant ¢>0 such that n >=ny

f(n) = O(g(n))
if f(n) <= C.g(n) forallc,ng>0, n>ng.

g(n) is asymptotic upper bound for f(n) f(n) = Olg(n))

Note That:
L

= we use O-notation to provide an upper bound on the time for any
input.

= the worst case running time of an algorithm is upper bound on the

time for any input.

= the worst case running time gives us guarantee that the algorithm

will never take any longer.

Example #1:

L |
let f(n) = n+ 5 and g(n) = n show that f(n) = O(g(n)) choose c=6.

answer:
O(g(n)) if f(n)<=c.g(n)forc,ny,>0
n+5 <=c.n
n+5 <= 6n
The condition has been proofed forany n;> 0

Example #2

Prove that the running time of f(n) = 3n? + 10n is O(n?).

by big oh definition
f(n) = O(n?) if f(n) <= C.g(n) forc,n, >0

3n? +10n <=c.n?
3+10/n <=c
when n, => 1 then
3410 <=c
13 <=c¢
The condition has been proofed when c = 13 when n=1

Theory

if f(n)=a,n™ +a, .n™1+..+a,n+a, then f(n)
=0 (nm)

when a function is sum of several terms, its order of growth is
determined by the fastest growth term.

Proof
f(n)=a,n™ +a,,N™+ .. +a;n+a,

f(n)=0(n™) if f(n)<=rc.g(n) forc,ny >0

1 —
| a,,n™ +a,N™t+ .. +a,n+3, | <=c.n™

(|a,n™+a,N™t+ . +an+a,|)/n"<=c

whenny,=1

|a, +a,,+..+a;,+3, | <=c

2f(n)=0(n™)when c>= |a,+a,,;+..+a;+3a,

The condition has been proofed.

Q Notation (Big Omega)

() Notation

Given two functions f(n) and g(n), we say that f(n)
is Q(g(n)) if there exists positive constants n0 and
and ¢ such that:

fn)=cgn) vn=n,

f(n) = Q(g(n))

Example #1

show that f(n) = 5n?1s Q(n?) when ¢=5 and n,=1.

answer:
f(n) = Q (g(n)) 1f f(n)=>c.g(n) for c,n,>0
5n? => c.n?
5n? => 5n?
when n,=1
5=>5
The condition 1s true.

Example #2

show that f(n) = n?i1s Q(n) whenc= 3

answer:
f(n)=Q (g(n)) 1if f(n)=>c.g(n)forc,n,>0
n’> =>c.n
n’> =>3n
when ¢= 3
32== 3*3

Then f(n) = Q0)when no=3

© Notation (Big Theta)

® Notation

Given two functions f(n) and g(n), we say that f(n)
is (g (n)) if there exists positive constants n0, c1 and
c2 such that:

Vn=ngcgn) < fn) <c,gn)

f(n) = ©(g(n))

Example #1

let f(n) = 3n+2 , g(n) = n show that f(n) = ®(g(n)) when
¢c;=3.,¢,=4.

answer:
f(n) =O(gm)) 1t C,.gn) <=1t(n) <=C, gn)
3n <=3n+2 <=4n
when n=2
6 <=8 <=8
the condition has been proofed when c¢=3,c=4 for all n>1

> f(n) = ©(g(n))
f(n) = O(n)

Note That:

f(n) = ®(g(n)) 1s both upper and lower bound on f(n),
this means that the worst and the best case require the
same amount of time with in constant factor.

the ®-notation called a tight bound.

Theory:

For any 2 functions f(n) and g(n) we have f(n) = ®(g(n))
if and only if f(n) = O (g(n)) and f(n) = Q (g(n)).

Big O (O()) describes the upper bound of the complexity.

Omega (Q()) describes the lower bound of the complexity.

Theta (©()) describes the exact bound of the complexity.

O (g(n))

Exercise 2

Q
)
(C
L
| -
@
)
~
T
Q
)
=

1. T

