
تامولعملاةینقتةیلكـسلبارطةعماج

Design  and Analysis Algorithms
تايمزراوخ ليلحت و ميمصت

ITGS301

Lecture 2  :ةيناثلا ةرضاABا

2022 فیرخ



The fundamental reason is that for large values of n, any function that contains an n2 term
will grow faster than a function whose leading term is n. The leading term is the term
with the highest exponent.

we expect an algorithm with a smaller leading term to be a better algorithm for large
problems, but for smaller problems, there may be a crossover point where another
algorithm is better.

An order of growth is a set of functions whose asymptotic growth behavior is considered
equivalent. For example, 2n, 100n and n + 1 belong to the same order of growth, which is
written O(n) in Big-Oh notation and often called linear because every function in the set
grows linearly with n.

Order of growth



What is Order of Growth?

How the time/space complexity of an algorithm grows/changes with the input 
size
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What is Order of Growth?



A list of classes of functions that are commonly encountered when analyzing algorithms.

constant O(1)

logarithmic O(log2 N)

Linear O(N)

N log n O(n log2 N)

Quadratic O(N2)

Cubic O(N3)

Exponential O(2n)

Factorial O(n!)

Orders of Common Functions



Order of growth

The following table shows some of the orders of growth that appear most
commonly in algorithmic analysis.
For the logarithmic terms, the base of the logarithm doesn’t matter; changing
bases is the equivalent of multiplying by a constant, which doesn’t change the
order of growth.
Similarly, all exponential functions belong to the same order of growth
regardless of the base of the exponent.
Exponential functions grow very quickly, so exponential algorithms are only
useful for small problems.



Order of growth
Name Function

Constant 𝑐
Double Logarithmic log log 𝑛
Logarithmic log 𝑛
Fractional Power 𝑛&, 0 < 𝑐 < 1
Linear 𝑂(𝑛)
Loglinear 𝑛 log 𝑛 and log 𝑛!
Quadratic 𝑛/
Polynomial 𝑛&, 𝑐 > 1
Exponential 𝑐1, 𝑐 > 1
Factorial 𝑛!
Super Exponential 𝑛1



Common order-of-growth classifications Running time complexity



Exercise 1

Arrange the functions in increasing asymptotic order

(a) 𝑛 ⁄3 4

(b) 𝑒𝑛
(c) 𝑛 ⁄6 7

(d) 𝑛 log 𝑛
(e)1.0000001𝑛

n n log2(n) n^(7/4)
2 2 3
4 8 11
8 24 38

16 64 128
32 160 431
64 384 1448



O-notation (Big-Oh)

• Big O Notation (Big-Oh)
Definition: Let f(n) , g(n) be functions, we say f(n) is of order g(n) if there 

is a constant c>0 such that n >= n0

f(n) = O(g(n))

if f(n) <= C.g(n) for all c, n0 > 0 , n > n0.

g(n) is asymptotic upper bound for f(n)



Note That:

§ we use O-notation to provide an upper bound on the time for any

input.

§ the worst case running time of an algorithm is upper bound on the

time for any input.

§ the worst case running time gives us guarantee that the algorithm

will never take any longer.



Example #1: 

let f(n) = n+ 5 and g(n) = n show that f(n) = O(g(n)) choose c=6.

answer:
f(n) = O(g(n))    if   f(n) <= c.g(n) for c,n0 > 0 

n+5 <= c.n
n+5 <= 6n

The condition has been proofed for any n0 >  0

f(n) = O(n)



Prove that the running time of f(n) = 3n2 + 10n  is O(n2). 

Proof:
by big oh definition 

f(n) = O(n2)  if  f(n) <= C.g(n) for c,n0 > 0

3n2 + 10n <= c.n2

3 + 10/n  <= c
when n0 => 1 then 

3+ 10    <= c
13  <= c

The condition has been proofed when c = 13 when n=1

Example #2   



Theory
if  f(n) = amnm + am-1nm-1 + … + a1n + a0  then  f(n)     

= O ( nm)

when a function is sum of several terms , its order of growth is 
determined by the fastest growth term.

Proof

f(n) = amnm + am-1nm-1 + … + a1n + a0

f(n) = O(nm ) if f(n) <= c.g(n) for c,n0 > 0



| amnm + am-1nm-1 + … + a1n + a0  | <= c.nm

( | amnm + am-1nm-1 + … + a1n + a0  | ) / nm <= c

when n0 = 1

| am + am-1 + … + a1 + a0  |  <= c

.: f(n) = O (nm ) when  c >=   | am + am-1 + … + a1 + a0  | 

The condition has been proofed.



Ω Notation

Given two functions 𝑓(𝑛) and 𝑔(𝑛), we say that 𝑓(𝑛)
is Ω(𝑔(𝑛)) if there exists positive constants 𝑛0 and 
and 𝑐 such that:

𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 ∀ 𝑛 ≥ 𝑛>

Ω Notation (Big Omega) 



Example #1



Example #2



Θ Notation

Given two functions 𝑓(𝑛) and 𝑔(𝑛), we say that 𝑓(𝑛)
is Θ(𝑔(𝑛)) if there exists positive constants 𝑛0, 𝑐1 and 
𝑐2 such that:

∀ 𝑛 ≥ 𝑛>, 𝑐3 𝑔(𝑛) ≤ 𝑓 𝑛 ≤ 𝑐/ 𝑔(𝑛)

Θ Notation (Big Theta)



Example #1





Big O (O()) describes the upper bound of the complexity.

Omega (Ω()) describes the lower bound of the complexity.

Theta (Θ()) describes the exact bound of the complexity.

Θ (g(n))
Ω (g(n))O (g(n))



Write True or False :

T(n) = 5n3 + 2n2 + 4 log n

Exercise 2

1. T(n) Î O (n4)
2. T(n) Î O (n2)
3. T(n) Î Q (n3)
4. T(n) Î O (log n)
5. T(n) Î Q (n4)
6. T(n) Î Ω (n2)



The End .


