Cia ol A5 S~ s sl

Design and Analysis Algorithms
eyl L= (otpnd

ITGS301
Lecture 1:1o¥) 8 L=l




Course Organization:

"  Midterm Exam 40% @9 ?535

Input Algorithm Output

B —Assigrment—{presentation)—+0%

Final Exam 50%

References INTRODUCTION T0
Book: Introduction to Algorithms third Edition by Cormen, LG OR ,, S




Topics covered

Subjects

Subjects

Introduction of algorithms

The recursion-tree method for solving recurrences

Algorithm specification

Designing Algorithms / Divide-and-Conquer

Performance analysis

Merge Sort

Space & Time complexity

Quick Sort

Asymptotic notations

Merge sort and Quick sort-Complexity

Big O, Big Omega, & Big Theta

Dynamic Programming

Complexity and Orders of Growth

Fibonacci Numbers problem

Standard notations and common functions

0/1 Knapsack Problem

Analysis of time Complexity

Elementary Graph Algorithms

Sorting problem : Insertion sort

Time Complexity of Insertion Sort

Representations of graphs

Breadth-first search

RECURRENCE RELATIONS:

Factorial problem

Greedy Algorithms

Binary Search Trees.

Minimum Spanning Tree:

SOLVING RECURRENCESteration method

Kruskal's Algorithm, & Prim's Algorithm

The master method for solving recurrences

Single-Source Shortest Paths

Dijkstra’s algorithm




Outcomes:

Learn how to analyze algorithms and estimate their worst-case behavior

Learn the concepts of designing algorithms

The ability to classify algorithms and analyze their execution time.

Studying some search algorithms.

The ability to determine the efficiency of the algorithm, and compare it with others.




Notion of Algorithm

You have a problem ? You want to solve it
How you solve it on computer?
That is what is required. Problem

What is a process? l

Algorithm

l

Computer




What is an Algorithm?

* An algorithm is a sequence of unambiguous instructions for solving

a problem.

e j.e., for obtaining a required output for any legitimate input in a
finite amount of time.

- Definiteness : each instruction is clear and unambiguous.

- Effectiveness : each instruction must be very basic .

- termination : for a finite amount of time it never goes to infinite look
- Correctness




The algorithm must satisfy the following criteria:
I

Each operation must be definite , meaning it must be perfectly

clear.

Each operation should be effective , meaning it can be done in a
finite amount of time.

An algorithm may have zero or more input.

An algorithm produces one or more outputs.

Terminates after a finite number of operations.




EXPRESSING ALGORITHMS

“Algorithm specification”

We express algorithms in whatever way the clearest:

* Natural Language: English

1. Input a set of 4 marks
2. Calculate their average by

summing and dividing by 4
3. if average is below 50
4. Print “FAIL"
5. else
6. Print “PASS”



EXPRESSING ALGORITHMS “Algorithm specification”

* Graphic representation : Flowchart

* Pseudo-Code

* |tis a mixture of natural language and

A
AVERAGE=(M1+M2+M3+M4)/4
I

programming language.
* |nthis method, we describe algorithm as program

PRINT
“PASS”




EXPRESSING ALGORITHMS “Algorithm specification”

L
e Pseudocode

we sometimes embed English statements into pseudocode. Therefore, unlike for

real programming language, we can’t create a complier that translates

Pseudocode to machine code.

Start

If the statement is true
Then go to Action 1
Else go to Action 2

End

Above is an example -
of the same |‘“‘5"°“2 |

instructions written

as pseudocode and
as a flowchart. *




Pseudo-Code
L]

High-level description of an algorithm Pseudocode Details

More structured than English prose

. o Control flow o Method call
LeSS deta”ed than d program ; = if . then ... [else .. ] method (arg [. arg...])
1 = while ... do ... a Return value
repeat ... until ... return expression

Preferred notation for describing

|

= for .. do .. o Expressions:

= Indentation replaces braces «Assignment
o Method declaration

Hides program design issues Algorithm method (arg . arg...])
Input .. n? Superscripts and other
Output ... mathematical
formatting allowed

algorithms
= Equality testing




Pseudo-Code Conventions

. Comments begin with // and continue until the
end of line.

. Blocks are indicated with matching braces{and }.

. An identifier begins with a letter. The data types
of variables are not explicitly declared.

. Assignment of values to variables is done using
the assignment statement.

<Variable>:= <expression>;

. There are two Boolean values TRUE and FALSE.
» Logical Operators:AND, OR, NOT

» Relational Operators:<, £,>,2,=,2,




Pseudo-Code Conventions

5. There is only one type of procedure: Algorithm, contains

-heading
-body

Algorithm Name (Parameters list) — heading




Example :Algorithm

i 8
2.
-
4,
2,
6.
7l
8.
Q.

algorithm Max(A,n)

// Ais an array of size n
{

Result := A[1];
fori:z=2tondo

if A[i] > Result then
Result :=A[i];

return Result;

}




The study of algorithms includes many areas. In this course, we will focus on two

areas which are how Design and Analysis of algorithms.

Algorithms

Design Analysis

Methods and techniques  Mathematical Comparison

which vyield a good and a of

: algorithms  without
seful ! orl_thms to solve

actually implementing it.




. [
How to Analyze Algorithms

To execute an algorithms we use the computer’s central processing unit (CPU) to

perform operations. Also, we use the memory to hold the program and its data.

Analysis of algorithms refers to the process of determining how much computing

time and storage an algorithms requires.
How to Design Algorithms

we will study various design techniques such as Divide and conquer, and Greedy

methods.




Analysis of Algorithms

@ Objective

Algorithm analysis aims to measure the efficiency of an algorithm using two metrics:
1. Time efficiency (complexity): indicates how fast the algorithm solves the problem

2. Space efficiency (complexity): refers to the amount of memory units required by
the algorithm without calculating the space needed for the input and output.
oelibe plisialy Gaj)lsadl 85US Gl ) Auailsadl el gy

Al J=> 3 dua)yl g3l de o s B gl B21AS (V)
Olryseally OMSdel) Aoy 8, SIAUN Ol (90 dan g3l Lgaddas L5\.’\ 8,511 Cild>g tdlunadl BelaS(Y)




s Algorithm Efficiency
[

There is seldom algorithm for any any problem. when comparing two

different algorithms that solve the same problem. we often find that one

algorithm is more efficient than other using:

1. How much time it requires. (Complexity of time)

2. How much memory space it requires. (space Complexity)




Analysis of algorithms

Issues:
Correctness
time efficiency
space efficiency
optimality

Approaches:
* Theoretical analysis
* Empirical analysis




Theoretical analysis of Time efficiency

[
Time efficiency is a function of input size.

It is analyzed by determining the number of repetitions of the basic operation
of the algorithm.

Basic operation: the operation that contributes the most towards the running
time of the algorithm

input size

Y
o /T(n) z/(;opc(n)

execution time Number of times basic

for basic operation operation is executed

Note: Different basic operations may cost differently!
or cost




Measuring Running time

I
The approach: identify and count basic operations (steps) in the

algorithm : . —
Findxinanarray  Comparison of x with i The number of the

an entry in the array : : e e ey |
Multiplying two _ Multplcation of twg "7 "0 Matrces . The dimensions of the
WMmI real numbers Sortan armay The number of elements
entries

Sort an array of Compamonoftwo

numbers Solveasystunofiu ﬂnnumberofmm‘
or the number of the
~unknowns, or both




Empirical analysis of time efficiency

L ]
Many algorithms cannot be analyzed mathematically. The alternative way is the
Empirical Analysis.

The steps are:

» Select a specific (typical) sample of inputs
Decide on the efficiency metric (execution time or operation count)
Implement the algorithm
Run the code and record the observed data (time or number of operations)
Analyze the data Ll

Cr+|  Lgpue AL

olollo X4 A}

Language Compiler Architecture Operating System




Comparing Algorithms

Given 2 or more algorithms to solve the same problem, how do we select the best
one?’

Some criteria for selecting an algorithm

1) Is it easy to implement, understand, modify?
2) How long does it take to run it to completion?
3) How much of computer memory does it use?




Comparing Algorithms

Compare two Algorithms A and B using Empirical analysis

v Implement both algorithms using a programming Execution Time

@

language
—==\

Programming Language

@ -

v’ Report the execution time of each algorithm [ ]

Algorithm A Algorithm B

v Run both algorithms on the same input




Comparing Algorithms

I
Compare two Algorithms A and B using Theoretical analysis

* Uses a pseudo-code description of the algorithm instead of an implementation
* Characterizes running time as a function of the input size, n

* Takes into account all possible inputs




Comparing Algorithms example

Problem: given a group of n numbers, determine the k' largest

Algorithm 1

Store numbers in an array
Sort the array in descending order

Return the number in position k.

Algorithm 2

Store first k numbers in an array

Sort the array in descending order

For each remaining number, if the number is
larger than the k™ number, insert the number
in the correct position of the array

Return the number in position k




Which Algorithm |s Better?

The algorithms are correct, but which is the best?

* Measure the running time (number of operations needed).

 Measure the amount of memory used.

 Note that the running time of the algorithms increase as the size of the input

Increases.




Analyzing Algorithms

Predict the amount of resources required:
Computational time: how fast the algorithm runs?
Memory: how much space is needed?

Fact: running time grows with the size of the input.

Input size (number of elements in the input) Size of an array, # of elements in a
matrix, vertices and edges in a graph




Analyzing Algorithms

Input Size

In analysis of algorithms, inputs size refers to the size of the problem instance to be
solved.

Problem Type Input Size

Sorting & Searching Number of entries in the array

Graph Number of vertices or edges or both

Computational Geometry Number of points, vertices, edges, line segments, polygons, etc.
Matrix Operations Dimensions of the matrices

Number Theory & Cryptography Number of bits




In this course, we want to measure only the computation time (Running

Time) of an algorithm.

Def: Running time = the number of Basic operations (steps) executed

before termination




Basic Operation

An primitive operation is called a basic operation if it is of highest frequency among
all other primitive operations.

Operation Example
Comparison > <, >=, <=, ==, |I=
Arithmetic + - %, ], %%, %, ++, --
Assignment x=3

:wﬂl agk’-"
(&3 A9 Oldeadl gpoz (o AT H1SS I3 Aol dddas (2




Asymptotic Notations

Asymptotic Notations

Asymptotic notations are mathematical tools to represent the time and space

complexity of algorithms.

royliall kel o
(8,S101) d-Lually Bg)l gt (o lao) g3l BeliS o) Ay o (2




Asymptotic Notations

[
There are several kinds of mathematical notations which are very useful

for this kind of analysis. we will present three asymptotic notations that
are:

1) O-notation .

2) Q- notation.

3) ©- notation.

These notations are used to express the complexity of a given algorithm, or used to Compare two algorithms or more that are
designed to solve the same problem




Asymptotic Notations

Asymptotic Notations

The following 3 asymptotic notations are used to represent the time/space complexity of
algorithms:

(1) Big Oh Notation (O) : Upper bound
(2) Big Theta Notation (©) :Exact bound
(3) Big Omega Notation (Q) : Lower bound

>
>
>

Time Complexity
Time Complexity




Asymptotic Notations

Definitions Using limits:

The following 3 three principal cases:

implies f(n) = 0(g(n))
implies f(n) = ©(g(n))
implies f(n) = Q(g(n))

>

>
>
>

Time Complexity
Time Complexity




Analysis Cases

I
1. Worst case:
e T(N)=maximum time of algorithm on any input of size N. —
* Provides an upper bound on running time. DR e

B worst case

2. Best case:
* T(N)=minimum time of algorithm on any input of size N.
* Provides an lower bound on running time.

Running Time

3. Average case: . 2000 | 3000 4000
* T(N) = expected time of algorithm over all input of size N. nput Size
e Provides a prediction about the running time







