
تامولعملاةینقتةیلكـسلبارطةعماج

Design and Analysis Algorithms
تايمزراوخ ليلحت و ميمصت

ITGS301

Lecture 1 :89ولأا ةرضا01ا

2022 فیرخ

§ Midterm Exam 40%

§ Assignment (presentation) 10%

§ Final Exam 50%

Course Organization:

References
Book: Introduction to Algorithms third Edition by Cormen,

Topics covered

Outcomes:

o Learn how to analyze algorithms and estimate their worst-case behavior

o Learn the concepts of designing algorithms

o The ability to classify algorithms and analyze their execution time.

o Studying some search algorithms.

o The ability to determine the efficiency of the algorithm, and compare it with others.

You have a problem ? You want to solve it
How you solve it on computer?
That is what is required.
What is a process?

Notion of Algorithm

Computer

Problem

Algorithm

Input Output

What is an Algorithm?

• An algorithm is a sequence of unambiguous instructions for solving
a problem.

• i.e., for obtaining a required output for any legitimate input in a
finite amount of time.

- Definiteness : each instruction is clear and unambiguous.
- Effectiveness : each instruction must be very basic .
- termination : for a finite amount of time it never goes to infinite look
- Correctness

The algorithm must satisfy the following criteria:

• Each operation must be definite , meaning it must be perfectly

clear.

• Each operation should be effective , meaning it can be done in a

finite amount of time.

• An algorithm may have zero or more input.

• An algorithm produces one or more outputs.
• Terminates after a finite number of operations.

EXPRESSING ALGORITHMS

We express algorithms in whatever way the clearest:

* Natural Language: English

“Algorithm specification”

EXPRESSING ALGORITHMS

* Graphic representation : Flowchart

* Pseudo-Code
• It is a mixture of natural language and

programming language.
• In this method , we describe algorithm as program

“Algorithm specification”

EXPRESSING ALGORITHMS

• Pseudocode
we sometimes embed English statements into pseudocode. Therefore, unlike for
real programming language, we can’t create a complier that translates
Pseudocode to machine code.

“Algorithm specification”

Pseudo-Code

• High-level description of an algorithm

• More structured than English prose

• Less detailed than a program

• Preferred notation for describing

algorithms

• Hides program design issues

Pseudo-Code Conventions

Pseudo-Code Conventions

5. There is only one type of procedure: Algorithm, contains

-heading
-body

Algorithm Name (Parameters list) heading

{
…….
……. Body
…….
}

Example :Algorithm

The study of algorithms includes many areas. In this course, we will focus on two
areas which are how Design and Analysis of algorithms.

How to Analyze Algorithms
To execute an algorithms we use the computer’s central processing unit (CPU) to

perform operations. Also, we use the memory to hold the program and its data.

Analysis of algorithms refers to the process of determining how much computing

time and storage an algorithms requires.

How to Design Algorithms

we will study various design techniques such as Divide and conquer, and Greedy
methods.

Analysis of Algorithms

Algorithm analysis aims to measure the efficiency of an algorithm using two metrics:

1. Time efficiency (complexity): indicates how fast the algorithm solves the problem

2. Space efficiency (complexity): refers to the amount of memory units required by

the algorithm without calculating the space needed for the input and output.

Objective

:STUسا;قم مادختساN ة;مزراوخلا ةءافك سا;ق Fإ ة;مزراوخلا ل;لحت فدهي

YU ة;مزراوخلا ةعW :تقولا ةءافك)١(
Z ةل^شملا لح

تاجرخملاو تلاخدملل ةمزلالا ةرbاذلا باسح نود ة;مزراوخلا اهبلطتت deZلا ةرbاذلا تادحو :ةحاسملا ةءافك)٢(

v Algorithm Efficiency

There is seldom algorithm for any any problem. when comparing two

different algorithms that solve the same problem. we often find that one

algorithm is more efficient than other using:

1. How much time it requires. (Complexity of time)

2. How much memory space it requires. (space Complexity)

Analysis of algorithms

Issues:
• Correctness
• time efficiency
• space efficiency
• optimality

Approaches:
• Theoretical analysis
• Empirical analysis

Theoretical analysis of Time efficiency

• Time efficiency is a function of input size.

• It is analyzed by determining the number of repetitions of the basic operation
of the algorithm.

• Basic operation: the operation that contributes the most towards the running
time of the algorithm

T(n) ≈ copC(n)
running time

execution time
for basic operation

or cost

Number of times basic
operation is executed

input size

Note: Different basic operations may cost differently!

The approach: identify and count basic operations (steps) in the

algorithm

Measuring Running time

Empirical analysis of time efficiency

Many algorithms cannot be analyzed mathematically. The alternative way is the
Empirical Analysis.

The steps are:

• Select a specific (typical) sample of inputs
• Decide on the efficiency metric (execution time or operation count)
• Implement the algorithm
• Run the code and record the observed data (time or number of operations)
• Analyze the data

Language Compiler Architecture Operating System

Comparing Algorithms

Given 2 or more algorithms to solve the same problem, how do we select the best
one?

Some criteria for selecting an algorithm

1) Is it easy to implement, understand, modify?
2) How long does it take to run it to completion?
3) How much of computer memory does it use?

Comparing Algorithms

Compare two Algorithms A and B using Empirical analysis

ü Implement both algorithms using a programming

language

ü Run both algorithms on the same input

ü Report the execution time of each algorithm

Comparing Algorithms

Compare two Algorithms A and B using Theoretical analysis

• Uses a pseudo-code description of the algorithm instead of an implementation

• Characterizes running time as a function of the input size, n

• Takes into account all possible inputs

Algorithm 1

• Store numbers in an array

• Sort the array in descending order

• Return the number in position k.

Problem: given a group of n numbers, determine the kth largest

Comparing Algorithms example

Algorithm 2

• Store first k numbers in an array

• Sort the array in descending order

• For each remaining number, if the number is

larger than the kth number, insert the number

in the correct position of the array

• Return the number in position k

Which Algorithm Is Better?

The algorithms are correct, but which is the best?

• Measure the running time (number of operations needed).

• Measure the amount of memory used.

• Note that the running time of the algorithms increase as the size of the input

increases.

Analyzing Algorithms

• Predict the amount of resources required:
Computational time: how fast the algorithm runs?
Memory: how much space is needed?

• Fact: running time grows with the size of the input.

• Input size (number of elements in the input) Size of an array, # of elements in a
matrix, vertices and edges in a graph

Analyzing Algorithms

Input Size

In analysis of algorithms, inputs size refers to the size of the problem instance to be
solved.

Problem Type Input Size
Sorting & Searching Number of entries in the array
Graph Number of vertices or edges or both
Computational Geometry Number of points, vertices, edges, line segments, polygons, etc.
Matrix Operations Dimensions of the matrices
Number Theory & Cryptography Number of bits

.اهلح دارملا ةلJشملا عGن بسح تلاخدملا مجح سا7ق فلتخ1

Def: Running time = the number of Basic operations (steps) executed

before termination

In this course, we want to measure only the computation time (Running

Time) of an algorithm.

Operation Example
Comparison >, <, >=, <=, ==, !=
Arithmetic +, -, *, /, **, %, ++, --
Assignment x = 3

Basic Operation

An primitive operation is called a basic operation if it is of highest frequency among
all other primitive operations.

:ةHسLئرلا ةHلمعلا

PQ عأ راركت تاذ ة7لوأ ة7لمعY ىرخلأا ة7لولأا تا7لمعلا عيمج نم.

Asymptotic Notations

Asymptotic Notations

Asymptotic notations are mathematical tools to represent the time and space

complexity of algorithms.

:براقملا لHلحتلا غيص

PQ ر غيصdاذلا(ةحاسملاو تقولا روظنم نم تا7مزراوخلا ةءافك ل7ثمتل ة7ضاsةر(.

Asymptotic Notations

There are several kinds of mathematical notations which are very useful

for this kind of analysis. we will present three asymptotic notations that

are:

1) O-notation .

2) Ω- notation .

3) Θ- notation.

These notations are used to express the complexity of a given algorithm, or used to Compare two algorithms or more that are
designed to solve the same problem

Asymptotic Notations

Asymptotic Notations

The following 3 asymptotic notations are used to represent the time/space complexity of
algorithms:

(1) Big Oh Notation (O) : Upper bound

(2) Big Theta Notation (Θ) : Exact bound

(3) Big Omega Notation (Ω) : Lower bound

Asymptotic Notations

Definitions Using limits:

The following 3 three principal cases:

lim
$→&

𝑓(𝑛)
𝑔(𝑛) = -

0 implies 𝑓 𝑛 = O(𝑔 𝑛)
𝑐 implies 𝑓 𝑛 = Θ(𝑔 𝑛)
∞ implies 𝑓 𝑛 = Ω(𝑔 𝑛)

Analysis Cases

1. Worst case:
• T(N) = maximum time of algorithm on any input of size N.
• Provides an upper bound on running time.

2. Best case:
• T(N) = minimum time of algorithm on any input of size N.
• Provides an lower bound on running time.

3. Average case:
• T(N) = expected time of algorithm over all input of size N.
• Provides a prediction about the running time

The End .

